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Abstract

Currently, the bulk of applications of Formal Concept Analysis (FCA) in software

engineering have focussed on software maintenance and re-engineering. In this thesis we

broaden the approach by applying FCA to a number of early-phase activities within the

software engineering life-cycle.

With respect to the requirements engineering phase, a case study is presented comparing

two class hierarchies that model aspects of a mass-transit railway ticketing system. The

first hierarchy was produced for an existing Object-Z specification of the system while

the second was derived using FCA. Contrasting the two hierarchies revealed that they

were essentially the same, however, the differences highlighted specification artefacts in

the existing hierarchy.

With respect to the design phase, the thesis discusses the use of FCA for the navigation

and visualisation of Formal Specifications written in Z. In response to the continued call for

formal methods tool support, we implement and explore a prototype specification browser

that exploits the abstractions afforded by FCA.

The research hypothesis is an integrated architecture for navigating formal

specifications using FCA. This architecture is realised using ZML and ToscanaJ to produce

a practical research tool. The thesis also includes the first broad survey of FCA in the

domain of software engineering and an FCA-based methodology for surveying academic

literature in general.
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Preface

During my Honours year in 1998 I implemented a remote graphical user interface

framework for a spatial database management system using Java’s Remote Method

Invocation (RMI) technology. The initial stages of the project required an

exploration of client-server communication techniques ranging from low-level socket-

based implementations through to technologies like RMI and CORBA (Common Object

Request Broker Architecture). As a result I developed a taste for middleware that continued

into 1999 when I spent 5 months working on software for a distributed meeting system at

Boeing Australia before commencing my PhD.

As I searched for a topic at the start of my candidature, Peter Eklund proposed the

exploration of distributed knowledge management with a focus on middleware — an

idea that would combine my previous work in distributed systems with the knowledge

management aims of our research group. His suggestion became the focus of my research

until later that year when Rudolf Wille visited Australia. During his visit Rudolf gave

a lecture on Barwise and Seligman’s “logic of distributed systems” and illustrated the

principle of information flow using a simple circuit with two lightbulbs. The states

of the system could be represented in a crosstable which is then amenable to Formal

Concept Analysis (FCA). In true cartoon fashion the lightbulb illustration gave me an

idea. I envisaged a tool where a communication protocol for a distributed system could

be specified as a (conceivably quite large) crosstable and the logic verified using Barwise

and Seligman’s approach. A user could then specify how they would like the protocol

implemented — RMI, CORBA, D-COM (Microsoft’s Distributed Common Object Model),

or sockets — and the desired software artefacts (interfaces, stubs, skeletons, data-types,

v



etc.). The tool would then automatically generate the required code or sub-system to

implement the protocol.

My research now had two threads to be developed in parallel until they merged

at some point or until one of them petered out. The first thread was distributed

knowledge management and the second, the specification and generation of communication

protocols. The protocol generation thread required the investigation of any existing

protocol specification techniques which led me to the Open Systems Interconnection (OSI)

Formal Description Techniques (FDTs) — LOTOS, Estelle, SDL — and in turn to the

world of Formal Methods. While the formal methods literature promised more reliable

software the ideas and methodologies had not been widely adopted. Part of the problem was

perceived as a lack of tool support that could make formal methods “easier” to use. There

was a call for robust tools that offered abstraction and were more intuitive, user-friendly and

easy to learn than currently available tools or research prototypes. I felt that each of these

requirements could be at least partially addressed by FCA and so I abandoned the pursuit of

distributed knowledge management. The focus of my thesis became an exploration of the

application of FCA to increase the usability of Formal Methods and formal specification in

particular.

Although I did not yet have a clear idea of how to create concept lattices from

formal specifications there was some existing work that described the relationship between

Conceptual Graphs and FCA. I planned to exploit this work by transforming a formal

specification into a series of conceptual graphs and then applying FCA. While I ultimately

chose a different implementation route a similar method is now being used successfully

by Richard Cole to analyse Java class libraries using FCA. Richard had also suggested a

thesis topic back in 1999 — using FCA for software visualisation. At that time I was only

aware of Snelting’s work but was surprised, as my literature survey unfolded, at the number

of papers describing FCA applications in software engineering. As a result the focus of my

thesis has widened to incorporate early-phase software engineering applications for FCA

of which formal specification is now just a part. Here then is the result: “the application of

Formal Concept Analysis to requirements engineering and design”.
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Chapter 1

Introduction

This thesis describes the application of Formal Concept Analysis (FCA) to a number of

early-phase software engineering activities. FCA is a data analysis technique that describes

the world in terms of objects and the attributes possessed by those objects. Thomas Boole’s

understanding that aconceptcan be described by itsextensionand intensionrepresents

the philosophical starting point for FCA. The mathematical foundations were laid by

Birkhoff [19] who demonstrated the correspondence between partial orders and lattices.

Birkhoff showed that a lattice can be constructed for every binary relation between a set of

objects and a set of attributes with the resulting lattice providing insight into the structure

of the original relation.

FCA arose during the early 1980’s from Wille’s work to restructure lattice theory [225]

and it has been successfully applied in a number of areas including psychology [181, 182,

53, 55], psychiatry [53], biological and social sciences [76, 53, 55], civil engineering [121],

experimental design [53], information retrieval [86, 35, 41, 161] and software engineering.

Within the field of software engineering FCA has already been used for a variety of tasks

including the re-engineering of legacy applications, the identification and maintenance

of class hierarchies, configuration management and dynamic program analysis. These

approaches are discussed in Chapter 2.

A survey of academic papers reporting the application of FCA in software engineering

was conducted during the course of this research. The survey found that the bulk of

applications of FCA in software engineering have focused on software maintenance and
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re-engineering tasks. In this thesis we broaden the approach by applying FCA to a number

of early-phase activities within the software engineering life-cycle.

With respect to the requirements engineering phase, a case study is presented comparing

two class hierarchies that model aspects of a mass-transit railway system. The first

hierarchy was produced for an existing Object-Z specification of the system while the

second was derived using FCA. Contrasting the two hierarchies revealed that they were

essentially the same, however, the differences highlighted aspects of the first hierarchy that

were specification artefacts.

With respect to the design phase, the thesis discusses the use of FCA for the navigation

and visualisation of Formal Specifications written in Z. In response to the continued call for

formal methods tool support, we implement and explore a prototype specification browser

that exploits the abstractions afforded by FCA.

The next section of this chapter introduces the motivation for this work and outlines the

overall structure of the thesis. Section 1.4 then provides a brief overview of some related

work. Finally, the chapter concludes with the required background for both FCA and the Z

specification language in Sections 1.5 and 1.6 respectively.

1.1 Background

There is a deep philosophical understanding behind FCA — the notion that a concept is

a unit of thought that is constituted by its extension and intension. A concept’s extension

contains all the objects that belong to the concept and the intension consists of all the

attributes that the objects have in common. “Formal” in the name distinguishes the

mathematisation of a concept from the concepts of the human mind.

In FCA the objects, attributes and the relationship between them are normally

represented in a crosstable known as aformal context. Again the use of the word

“formal” indicates that a “formal context” only encodes some small part of what is usually

understood as a context [78, 77]. The “formal” in Formal Methods, however, denotes the

ordered and deliberate application of mathematically rigorous processes based on formal

logic to the act of specification [142].
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Formal methods can be broadly defined as tools and notations with formal semantics

that support the unambiguous specification of the requirements for a computer system.

They provide a means by which the completeness and consistency of a specification can be

explored as well as proofs of correctness for implementations of the specification [217, 29].

The application of formal methods can be of benefit to specifiers, implementers, and testers

by providing unambiguous communication, verification, validation, and in some cases

mechanised code generation [208].

Despite the potential benefits offered by the integration of formal methods into software

development there still continues to be limited adoption in industries outside of those

writing safety critical software. While there can be significant advantages obtained by

integrating formal methods like Z into the production of software artefacts there are also

associated costs. This is the basis of a cartoon from the “Formal Methods Humour” web-

page [95] which appears in Figure 1.1. The cartoon reflects on the poor adoption of formal

methods by industry. Apparently the only thing harder to sell than formal methods is

“electric eel on a bun”. Hall makes this observation in the classic “Seven Myths of Formal

Methods” paper:

Formal methods are controversial. Their advocates claim that they can

revolutionise development. Their detractors think they are impossibly difficult.

Meanwhile, for most people, formal methods are so unfamiliar that it is difficult

to judge the competing claims [91].

There have been several attempts to dispel the “myths” surrounding formal

methods [91, 28], however, a number of them live on and in particular the myths

that “formal methods require highly trained mathematics” and that “formal methods are

unacceptable to users”. As is the case in software engineering there appears to be no silver

bullet. With respect to the need for highly trained mathematics Hall states:

A formal specification is full of mathematical symbols, which render it

incomprehensible to anyone unfamiliar with the terminology. Therefore, it is

supposed, a formal specification is useless for non-mathematical clients [91].

Hall then goes on to point out that mathematics is only one part of a specification and

that there may be other ways of conveying the specification to help clients understand a
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Figure 1.1: Cartoon from the “Formal Methods Humour” web-page [95] that
reflects on the adoption of formal methods.

project. Finney [68] also argues that the level of mathematics required to understand Z

specifications is higher than that suggested by the proponents of formal methods.

To find reasons why formal methods are not being adopted by industry, Knight, DeJong,

Gibble and Nakano [119] conducted a case study where part of the control system for a

research reactor was specified using three different formal methods. In a paper describing

their results they include the almost humorous statement that “A surprising discovery was

that the mathematical notation used in Z was not familiar to the nuclear engineers”.

In an attempt to address this problem there have been a number of approaches to

provide alternative visual representations of specifications for Z-like languages that have

both textual and graphical components within their notation. Typically these approaches

use the Unified Modelling Language (UML) [22] to visualise and aid in the understanding

of a particular specification aspect. A representative example is the work of Carrington and

Kim [117, 116, 115, 114] and these approaches are further discussed in Chapter 4.

Tool support has also been suggested as another path to increase the usability of formal
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methods. As the formal methods tools database [71], thecomp.spec.z FAQ [25], and the

WWW Virtual Library [26] demonstrate there is existing tool support for formal methods,

however, there continues to be a call for new tools [195, 194]. These calls cite a need not

only for tools that have matured from research prototypes into robust, commercial quality

software [33, 209], but also for functionality that is not currently supported. There is a

need for tools that can present comprehensible specifications and proofs for large systems

at different levels of abstraction. German notes that:

One important problem in current formal methods is that in practice it is

difficult to relate formal views of the same system at different levels of

abstraction. If we had better practical solutions to this problem, it might be

easier to apply formal methods at many stages during the development of a

large system [80].

In support of this, Clarke and Wing in their paper on the state of formal methods and

future directions list abstraction as a fundamental concept that requires further work:

Real systems are difficult to specify and verify without abstractions. We need

to identify different kinds of abstractions, perhaps tailored for certain kinds

of systems or problem domains, and we need to develop ways to justify them

formally, perhaps using mechanical help [37].

With reference to formal methods based on Abstract State Machines a similar request

is made for “more advanced and industrially satisfactory tool support. . . for defining,

simulating and visualizing. . . ASMs” [23].

Clarke and Wing go on to list a number of criteria that methods and tools should attempt

to address including ease of use, efficiency, and focused analysis. They argue that tools and

their output should be as easy to use as compilers. The time taken for analysis should be

comparable to that of compilation and individual tools need not be good at analysing all

aspects of a system, but they should analyse one aspect well.

The same theme underlies discussion on the Community Z Tools (CZT) mailing

list [135] which seeks to promote re-usable tools to increase interoperability and to

stop research projects from re-inventing the wheel so they can concentrate on genuine
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innovations and improvement [210]. The CZT mailing list was created so that the

shortcomings of formal methods tools could be addressed.

The Protocol Engineering Laboratory at the University of Delaware [209] also claims

that the need in formal methods is not for new languages — they consider existing

languages to be sufficient for ambiguity-free specification — but the need is for more user-

friendly and intuitive tools.

1.2 Motivation

Having briefly outlined some of the problems with formal methods the motivation for

the thesis can now be unfolded in three parts. First, the majority of FCA applications

in software engineering have focused on software maintenance and re-engineering tasks.

The thesis seeks to address this by exploring FCA applications to early-phase software

engineering activities. While formal methods are applicable to all phases of the software

engineering life-cycle [142, 143] the process of formal specification fits within the design

phase.

The second motivation for this work is related to formal specification and in particular

to existing attempts to increase the usability of Z-like languages by incorporating alternate

graphical representations, most notably UML. As an alternative to this approach, the thesis

explores the application of FCA for visualising and navigating formal specifications written

in Z.

Finally, the third motivation represents a response to the continued call for formal

methods tool support. Tool support represents another approach to increase the usability

and thereby the adoption of formal methods like Z. In response to this call the thesis

describes the implementation of a prototype specification browsing tool. This tool

embodies the research hypothesis: an integrated architecture for navigating and visualising

formal specifications using FCA.
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1.3 Thesis Structure

The overall structure of the thesis reflects the three motivations described above. Chapter 2

presents an overview of FCA support for software engineering. The initial sections of the

chapter introduce a framework based on the ISO12207 software engineering standard. The

framework is then used to categorise 47 academic papers reporting software engineering

applications for FCA. In addition to the ISO12207 categorisation a number of additional

classifications are introduced based on the target application language, reported application

size, collaboration between authors and citation patterns. FCA is used to present the

survey results and an FCA-based methodology for literature surveys in general is discussed.

Chapter 2 closes with a brief overview of the techniques described in the survey papers.

Chapter 3 describes an exercise in object-oriented (OO) software modelling where FCA

is applied to a formal specification case study using Object-Z. In particular, the informal

description from the case study is treated as a set of use-cases from which candidate classes

and objects are derived. The resulting class structure is then contrasted with the existing

Object-Z design and the two approaches are discussed.

Chapter 4 introduces an approach to navigating and visualising Z specifications using

FCA. The approach takes a source specification written in LATEX and produces a formal

context representing the static structure of the specification. A number of line diagrams

can then be produced which allow a user to investigate and explore various properties

of the specification. The line diagram does not replace, but is intended to be used in

conjunction with, the original Z specification. Abstraction through conceptual scaling,

nesting, zooming and folding line diagrams allow users to retain context while navigating

large specifications and an example based on theBirthdayBookspecification is presented.

Chapter 5 describes the implementation of a tool developed by the author for

interactively exploring Z specifications. The tool implements the ideas introduced in

Chapter 4 by exploiting ZML [195], an XML representation of Z, and the open-source,

cross-platform FCA tool ToscanaJ [16, 15]. The chapter opens with a discussion about

Z mark-up and representation issues including a number of approaches to render Z

specifications on the Web and ZML in particular. An overview of a number of FCA
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tools (including ToscanaJ) is then presented and the remainder of the chapter describes the

implementation of the prototype FCA-based specification browsing tool. Finally, Chapter 6

concludes the thesis and discusses future directions for this work.

1.4 Formal Methods and FCA

This section provides a brief overview of some existing work that uses both formal methods

and FCA. For example, Fischer has described an approach for browsing and navigating a

software component library by combining formal methods and FCA [70]. Components

in the library are associated with formal specifications that capture their behaviour in

the form of pre-conditions and post-conditions. Automated theorem provers are used to

deduce valid relations between pairs of components for a number of different relation types

including refinement and matching. A formal concept lattice is then computed that is used

as a structure for navigating the library. Fischer’s approach builds on the earlier work of

Lindig [128] and both approaches are summarised in Section 2.4.3.

Mili, Boudrigua, and Elloumi have also produced a semi-lattice of specifications where

a set of specifications are ordered using the “stronger than” relation [138]. A specification

S1 beingstronger thananother specificationS2 has a number of interpretations including

S1 is more refined, carries more input-output information, or is more specific thanS2. With

this ordering theleast upper boundbetween two specifications captures the total input-

output information carried by each of them and thegreatest lower boundcaptures the

common input-output information. This approach has applications for combining multiple

specifications during specification generation as well as completeness checking during

validation. The resulting lattice structure has also been used to organise a software library

for component reuse, however, it differs from a concept lattice because it does not admit a

universal upper bound1.

More recently, Ammons, Mandelin, Bodik, and Larus [5] have also incorporated FCA

and Formal Methods in their work to debug temporal specifications. While very small

1While a concept lattice must be a complete lattice (see Section 1.5.2) two sub-structures derived from
the concept lattice have also found applications: theIceberg lattice[191] and theGalois sub-hierarchy[87].
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specifications can be debugged by inspection, larger specifications are verified using tools

that check the specification against a number of programs. There may be hundreds or

thousands of execution traces from these checks and these are used as the formal objects

in their analysis. Each of the execution traces must be classified by an expert who decides

if they are correct or erroneous. By considering transitions within the finite automata that

represent the specifications as the formal attributes, a concept lattice can be produced that

clusters similar traces together. An expert can then classify clusters of traces rather than

classifying them all individually.

1.5 Formal Concept Analysis

FCA is a way of describing the world in terms of objects and the attributes possessed by

those objects. This section introduces the FCA notation and conventions used throughout

the thesis. The introduction is based on Ganter and Wille’s FCA textbook [78] and also

seeks to be consistent with the notation used by Davey and Priestly [44].

As briefly mentioned at the start of this chapter, FCA is based on the philosophical

understanding that a concept can be described by itsextension— that is all the objects that

belong to the concept and itsintensionwhich are all the attributes that the objects have

in common. For example, the extension of the concept “mammal” includes the objects

“humans” and “mice” while the intension includes the attributes “warm blooded” and “has

hair”. The relationships between the set of objects and the set of attributes is represented

by aformal context.

1.5.1 Formal Context

A formal contextK := (G,M, I ) is a triple whereG is a set of formalobjects(from the

German “Gegenstände”),M is a set ofattributes(from the German “Merkmalle”), andI

is an incidencerelation between the objects and the attributes.I ⊆ G × M is a binary

relation where (g,m) ∈ I is read “objectg has attributem” and is often written asgIm
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Mercury × × ×

Venus × × ×

Earth × × ×

Mars × × ×

Jupiter × × ×

Saturn × × ×

Uranus × × ×

Neptune × × ×

Pluto × × ×

Table 1.1: Formal context containing information about the planets.
Here G is the set of planet names,M = {small,medium, large,near, far,
moon(s),no moon} and the incidence relationI is represented by the presence
of an ‘×’ wheregIm.

for convenience. A formal context can be represented as a crosstable2 where the rows

representG, the columns representM and the incidence relationI is represented by a series

of crosses as shown in Table 1.1

In this example taken from Davey and Priestly [44] the object setG contains the

nine planets of the solar system while the attribute setM = {small, medium, large,

near, far,moon(s),no moon}. A ‘×’ at the intersection of an object row and attribute

column indicates that the object possesses that attribute. For example, the planet Earth

has a moon so (Earth,moon(s)) ∈ I . While the inclusion of bothmoon(s)andno moon

attributes appears to be redundant in this example, the context has been created so that

subsets of the attributes can be used asconceptual scales. Conceptual scaling is introduced

in Section 1.5.4.

For a subset of the objects,A ⊆ G we can define the set of common attributesA↑ as:

A↑ := {m ∈ M | (g,m) ∈ I ,∀g ∈ A}

and dually, for a subset of attributes,B ⊆ M we can define the setB↓ of objects having all

the attributes fromB as:

2The termscontext, crosstableandformal contextare used interchangeably throughout the remainder of
the thesis.
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B↓ := {g ∈ G | (g,m) ∈ I ,∀m ∈ B}

For convenienceA↑ andB↓ are often write asA′ andB′.

A concept can be found by taking a subset of the objects, finding the set of all attributes

that the objects possess and then determining the set of all objects with those attributes.

For example, starting with the planet Mars, the set of attributesB is {small,near,moon(s)}.

The set of all planets with these attributesA is {Earth,Mars} and together these two sets

represents the concept ({Earth,Mars}, {small,near,moon(s)}). (A,B) is aformal conceptof

(G,M, I ) iff:

A ⊆ G, B ⊆ M, A′ = B, and B′ = A.

The setA is called theextentandB the intentof the formal concept (A,B).

Given the above definition, thenA′ represents the intent of the concept (A,B) which

can be written (A,A′). Furthermore,A′′ is the smallest extent containingA. Consequently,

A ⊆ G is an extent iff A′′ = A. Similarly, B ⊆ M is an intent iff B′′ = B.

Within the formal context a formal concept represents a maximal rectangle and the set

of all formal concepts of (G,M, I ) is B(G,M, I ) (from the German “Begriffe”) or B(K).

For the example shown in Table 1.1K contains exactly 12 formal concepts whereB(K) is

the set:

{({Mercury,Venus,Earth,Mars, Jupiter,Saturn,Uranus,Neptune,Pluto}, {∅}),

({Earth,Mars, Jupiter,Saturn,Uranus,Neptune,Pluto}, {moon(s)}),

({Jupiter,Saturn,Uranus,Neptune,Pluto}, {far,moon(s)}),

({Jupiter,Saturn}, {large, far,moon(s)}),

({Uranus,Neptune}, {medium, far,moon(s)}),

({Mercury,Venus,Earth,Mars,Pluto}, {small}),

({Earth,Mars,Pluto}, {small,moon(s)}),

({Pluto}, {small, far,moon(s)}),

({Mercury,Venus,Earth,Mars}, {small,near}),

({Mercury,Venus}, {small,near,no moon}),
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({Earth,Mars}, {small,near,moon(s)}),

({∅}, {small,medium, large,near, far,moon(s),no moon})}.

The concepts of a context are ordered by thesubconcept-superconcept relationwhich

is defined by

(A1,B1) ≤ (A2,B2)⇐⇒ A1 ⊆ A2 ∧ B2 ⊆ B1

where (A1,B1) is called asubconceptof (A2,B2) and conversely, (A2,B2) is asuperconcept

of (A1,B1). Subconcepts are said to besmalleror less generalthan their superconcepts and

the superconceptslarger or more generalthan their subconcepts.

1.5.2 Formal Concept Lattice

For the set of conceptsB(K) there is always a greatest subconcept and a smallest

superconcept.B(K) together with the order relation ‘≤’ forms a complete latticeB(K).

A complete latticeis a partially ordered set in which every subset has a greatest lower

bound and a least upper bound.B(K) is called theconcept latticeof K. Concept lattices

are the basic conceptual structure in FCA and are also sometimes referred to as aGalois

latticebecause↑ and↓ form a Galois connection betweenG andM [44].

The basic theorem on concept lattices states that the concept latticeB(G,M, I ) is a

complete lattice in which theinfimumis given by:

∧
t∈T(At,Bt) =

(⋂
t∈T At,

(⋃
t∈T Bt

)′′)
and thesupremumby:

∨
t∈T(At,Bt) =

((⋃
t∈T At

)′′ ,⋂t∈T Bt

)
A complete latticeL is isomorphic toB(G,M, I ) iff there are mappings ˜γ : G→ L and

µ̃ : M → L such that ˜γ(G) is supremum-dense inL, ˜µ(M) is infimum dense inL andgIm is

equivalent toγg ≤ µm,∀g ∈ G,∀m ∈ M. In particularL � B(L,L,≤).
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In the worst case a concept lattice can consist of 2n concepts where the value of

n = (min(| G |, |M |). The complexity is therefore exponential. However, Godin and

Mili [86], and Lindig [128] offer experimental evidence that in practice the behaviour

is typically polynomial. Incremental lattice construction algorithms have also been

demonstrated [85, 83].

1.5.3 Line Diagram

A formal concept latticeB(K) can be drawn as a specialised Hasse diagram [44] which is

also commonly known as alabelled line diagram3. Each concept is represented by a node

in the line diagram and the line segments represent subconcept-superconcept relations. The

line diagram corresponding to the formal context in Table 1.1 appears as Figure 1.2.

Each node in the line diagram having exactly one segment down must also have at least

one object name. Similarly, each node with a single line segment up must have at least one

attribute name. These are known asirreducible objects and attributes. For example, the

two nodes below the top of the diagram in Figure 1.2 each have one line segment up and

are labelled with the attribute names “small” and “moon(s)”.

Rather than labelling each concept with its extent and intent areduced labellingscheme

is typically used so that each object and each attribute appear only once on the diagram.

Reduced labelling is used in Figure 1.2. In this scheme the label for an objectg is drawn

below theobject conceptγg := ({g}′′, {g}′) while the label for an attributem is drawn above

theattribute conceptµm := ({m}′, {m}′′).

The extent of a concept represents all the object labels that can be reached along a

descending path from the concept. The set of concepts along the downward path is known

as thedown-setor order ideal. Conversely, the intent of a concept can be recovered by

collecting all of the attribute labels along upward paths from the concept. The set of

concepts along the upward paths are known as theup-setor order filter.

3Although a line diagram is just a representation of a formal concept lattice the termsline diagramand
concept latticeare used interchangeably throughout the remainder of the thesis to denote the labelled line
diagram of a formal concept lattice.
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Figure 1.2: The formal concept lattice corresponding to the planet context in
Table 1.1.

For example, the extent of the concept with the attribute label “small” in

Figure 1.2 can be found by following the downward paths to recover the planets

{Venus,Mercury,Earth,Mars,Pluto}. That is, those planets which are small. The attributes

or intent of the planet Pluto can be found by following the upward paths from the concept

with the object label “Pluto” to recover the set{small,moon(s), far}.

This is an interesting feature of FCA. Unlike some other data analysis techniques, the

original data from the context can be recovered directly from the line diagram.Implications

between attributes can also be read from the line diagram. For example, there are at least

two planets that satisfy the following attribute implications:

{no moon} ⇒ {small,near},

{far} ⇒ {moon(s)},

{near} ⇒ {small},

{large} ⇒ {far,moon(s)}, and

{medium} ⇒ {far,moon(s)}.

More formally, an implication between attributes inM is a pair (A,B) of subsets

A,B ⊆ M denotedA ⇒ B. The implication is read as “A implies B” where the setA is

14



di
am

et
er

(k
m

)

Mercury 4880
Venus 12,100
Earth 12,756
Mars 6,786.8
Jupiter 143,200
Saturn 120,000
Uranus 51,800
Neptune 49,528
Pluto ≈2,330

Table 1.2: A many-valued context showing the equatorial diameter (in
kilometres) for the nine planets.
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< 25,000 km ×

≥ 25,000 km and < 100,000 km ×

≥ 100,000 km ×

Table 1.3: A conceptual scale which maps planet diameters to the sizessmall,
mediumandlarge.

thepremiseof the implicationA ⇒ B andB is theconclusion. An implication holds in a

formal contextK iff every object that has all the attributes inA also has all attributes inB,

B ⊆ A′′, which is equivalent toA′ ⊆ B′.

1.5.4 Conceptual Scaling

In addition to one-valued data FCA can also be used to analyse many-valued data sets like

the table shown in Table 1.2. Amany-valued contextis a 4-tuple (G,M,W, I ) whereG

is a set of objects,M is a set of many-valued attributes,W a set of attribute values and

I ⊆ G×M ×W where (g,m, v) ∈ I and (g,m,w) ∈ I ⇒ v = w.

A many-valued context is first transformed into a one-valued context byconceptual

scaling. A conceptual scalefor a many valued attributem is a one-valued context which

has the attribute values ofmamong its objects. Table 1.3 presents such a scale which maps

planet diameters to the sizessmall, medium,andlarge.
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Let (G,M,W, I ) be a many-valued context and for eachm ∈ M let Sm := (Gm,Mm, Im)

be a scale form. Thederived contextof (G,M,W, I ) with respect toplain scalingwith the

scales (Sm | m ∈ M) is then (G,N, J) where:

N :=
�

m∈M{m} ×Mm

and

(g, (m,n)) ∈ J :⇐⇒ ∃w∈W(g,m,w) ∈ I and (w,n) ∈ Im.

The derived context resulting from the application of the conceptual scale in Table 1.3

to the many-valued context Table 1.2 appears as Table 1.4. The corresponding line diagram

is shown in Figure 1.3. Conceptual scales represent a very powerful tool that can be used to

store views that partition the data being analysed. Within a conceptual data system multiple

views can be stored and applied to effectively query the data.

A number of elementary scale types are available includingnominal, ordinal, inter-

ordinal andbi-ordinal scales. Nominal scales are used to scale attributes with mutually

exclusive values such as{moon(s),no moon}. Ordinal scales are used where the values of

a many-valued attribute are ordered and each of the values implies the “weaker” ones. For

example, ordinal scaling could be used with the attribute values{strong, stronger, strongest}

and the result is a chain of extents which can be interpreted as a hierarchy.

Inter-ordinal scales are used to scale bipolar values which are often used to represent

questionnaire answers. For example, the values{≤ 1, ≤ 2 ≤ 3, ≥ 1, ≥ 2, ≥ 3} result

in extents which are the intervals of values. Bipolar attributes can also be scaled using

bi-ordinal scales where there is a partitioning within a hierarchy. For example, within

a marking scheme with values{very poor,poor,acceptable,good, very good} where the

value “very good” implies “good” but not “poor”.

1.5.5 Nested Line Diagrams

Like conceptual scaling,nested line diagramsrepresent a powerful tool for abstraction and

analysis. A nested line diagram is produced by first partitioning the attribute setM of
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Mercury ×

Venus ×

Earth ×

Mars ×

Jupiter ×

Saturn ×

Uranus ×

Neptune ×

Pluto ×

Table 1.4: The formal context that results from applying the conceptual scale
in Table 1.3 to the many-valued context in Table 1.2.

Figure 1.3: The formal concept lattice corresponding to Table 1.4 (a sub-
context of Table 1.1 for the size attributessmall, mediumandlarge).

a context into the setsM1 andM2. The two concept latticesB(G,M1, I ∩ G × M1) and

B(G,M2, I ∩G×M2) can then be computed. The nested line diagram is the direct product

of these two lattices where the elements ofB(G,M, I ) are shown as solid circles. For two

contextsK1 andK2 thedirect productis given by

K1 ×K2 := (G1 ×G2,M1 ×M2,∇)

with (g1,g2)∇(m1,m2) :⇐⇒ g1I1m1 or g2I2m2.

As an example, the context from Table 1.1 can be partitioned into the two sets
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Figure 1.4: The formal concept lattice for a sub-context of Table 1.1 for the
attribute setM = {near, far,moon(s),no moon}.

{small,medium, large} and{near, far,moon(s),no moon}. The line diagrams corresponding

to the two sub-contexts are shown in Figures 1.3 and 1.4 respectively. The resulting nested

line diagram is shown in Figure 1.5.

Section 5.2.3 of the thesis introduces the FCA tools A and TOSCANA which

implement conceptual scaling and nested line diagrams using formal contexts that are

stored in relational databases. The normal workflow for these tools is to partition a single

large context into sub-contexts which are then used as scales. Multiple scales can be

composed together to effectively query and explore the data which can be viewed using

nested line diagrams.

1.5.6 Order Embedding

The automated layout of large or complex line diagrams in FCA often produces poor

results [41]. One effective approach for drawing lattices up to moderate size is to use

anorder embeddingwhere a lattice with a known layout is used to draw a second lattice.

In Figure 1.6 the lattice on the left is embedded in the lattice closest to center to produce

the lattice shown right.
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Figure 1.5: Nested line diagram showing the scale from Figure 1.3 nested
inside Figure 1.4.

A map ϕ : M −→ N between two ordered sets (M,≤) and (N,≤) is called an order

embedding if the map isorder preservingsuch that

x ≤ y⇒ ϕx ≤ ϕy

for all x, y ∈ M and furthermore, ifϕ also fulfils the converse implication

x ≤ y⇐ ϕx ≤ ϕy.
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Figure 1.6: The lattice shown right is the result of anorder embedding. The
initial lattice shown left is sometimes called a “reduced line diagram”.

1.5.7 Attribute Exploration

A concept lattice can be very large or potentially even infinite. However, despite being

unable to determine the entire lattice, parts of it may be known and the context may have

a comparatively small set of objects or attributes. The context of such an unknown lattice

is called aconceptual universeand while it may not be practical or possible to completely

determine the context there is an approach for determining sets of “typical” objects or

attributes.

Let U := (GU,M, IU) be a conceptual universe with a fixed set of attributesM. A

typicalor representativeset of objectsG ⊆ GU if the concept lattices (B(GU,M, IU),≤) and

(B(G,M, IU ∩ (G×M)),≤) are isomorphic such that (A,B) 7→ (Ã,B). That is, the intents of

related concepts are the same.

Provided that a domain expert has sufficient knowledge, the process ofattribute

exploration[32, 75, 190] can be used to determine a typical set of objects. The process

suggests implications to the domain expert who either accepts the implication or rejects

it and updates the context with a counter-example. Prior to starting the exploration any

known, pre-existing implications — so calledbackground implications— can be identified.

Once the exploration process is complete the result is a set of valid implications, known as

theDuquenne-Guigues-base, and a context containing a typical set of objects.
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By transposingG andM in the context it is also possible to conductobject exploration.

The question regarding implications then changes from “Do all the objects having all the

attributes of the premise also have all the attributes of the conclusion?” to “Do all the

attributes which belong to the objects of the premise also belong to all the objects of the

conclusion?”. Where both the set of objects and the set of attributes are extensible a domain

expert can switch between attribute exploration and object exploration to alternatively fill

out the set of objects and attributes respectively.

Attribute exploration can also make use of a three-valued logic where the third value

acts as a placeholder for unknown values, e.g. “true”, “false”, “uncertain”. Using this type

of logic only part of the conclusion needs to be disproved and any unknown parts can be left

open — perhaps to be determined as a later refinement step once the initial requirements

have been implemented. A number of tools support interactive attribute exploration and

an overview of tools for FCA is presented in Section 5.2. The next section of this chapter

introduces the notation used in the Z specification language.

1.6 Formal Specification in Z

Z [47, 92, 183, 184, 230, 232] is a state based formal method that exploits Zermelo-Fränkel

set theory and first order predicate logic. The Z specification language was developed by

the Programming Research Group [150] at the Oxford University Computing Laboratory

in the early 1980’s — around the same time that FCA was first introduced. In 2002 Z was

standardised as ISO/IEC 13568:2002 [104], however, the work described in this thesis has

used the form of Z as introduced by Spivey [183] which is basically a subset of standard Z.

Specifications in Z are composed of namedschemaboxes that describe operations by

their input and output behaviour. Schemas are divided into an upper region called the

declarationor signaturepart and a lower region called thepredicate, property, or more

correctlyformulapart. Variables and their respective types are declared in the upper region

while the lower region contains predicates describing pre-conditions and post-conditions

for the current operation. Models are constructed by specifying and composing a series of

schemas and the schemas can be refined to reflect the desired level of system abstraction.
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As a result of the mathematical nature of the notation (and the graphical nature of schema

boxes) most Z tools are comprised of at least a formatting package for LATEX [124] and a

type-checker.

Schemas are used to represent both the static and the dynamic aspects of a system. The

static aspects include the possible states of the system and any invariants that must hold on

state transitions. Dynamic aspects include the actual state changes, the possible operations

and the relationship between inputs and outputs.

Spivey’sBirthdayBookspecification [184] represents the equivalent of a “Hello World”

program for Z. It introduces the notation and ideas behind the Z specification language.

Only parts of theBirthdayBookspecification are presented here and this introduction also

seeks to be consistent with the notation described by Diller [47]. TheBirthdayBook

specification is also used as an illustrative example in Chapter 4 and the complete

specification appears in Appendix A.

TheBirthdayBookspecification provides an introduction to the Z notation by describing

a simple reminder system for recording people’s birthdays using a set of names and a set

of dates. Spivey’s specification of the system also includes schemas to add new name/date

pairs into the system as well as operations to check for current birthdays.

The basic data-types in Z are modelled as sets — in this case a set of names and a set

of dates:

[NAME,DATE]

A schema can then be declared to describe the state space of the system as a set of

names that are recognised by the system and a partial mapping from the names to the

corresponding birthdates:

BirthdayBook
known: P NAME
birthday : NAME 7→ DATE

known= dombirthday
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AlreadyKnown result !name?

Figure 1.7: A black box specification of theAlreadyKnownoperation.

The initial state of the system also needs to be described:

InitBirthdayBook
BirthdayBook

known= ∅

Having declared the basic types, described the state space of the system and the initial

state, operations can now be defined. Schemas in Z are described by their input and output

behaviour. Diller uses the illustration of a black box specification where the implementation

is hidden inside the box and the specifier can describe conditions for the inputs and outputs.

The implementation of the box is left as an exercise for the programmer. Z uses procedural

abstraction to focus on what has to be done but not how it is done.

For example, to indicate if a name has already been used by the system an

AlreadyKnownoperation can be implemented. A black box representation of the

AlreadyKnownoperation appears in Figure 1.7. In Z inputs are denoted with ‘?’ and

outputs with ‘!’. TheAlreadyKnownfunction takes a name as input and produces an output

to indicate the success or failure of the operation.

Enumerated data-types can also be declared and aREPORTdata-type could be used to

list the possible result values. This is an example of a free-type definition and it defines

REPORTas a set containing exactly three values:

REPORT ::= ok | already known| not known

TheAlreadyKnownschema corresponding to the black box specification in Figure 1.7

could now be written in Z as:
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AlreadyKnown
ΞBirthdayBook
name? : NAME
result! : REPORT

name? ∈ known

result! = already known

Schema inclusion allows an existing schema to be used inside another schema. For

example, theΞBirthdayBookdeclaration in theAlreadyKnownschema above includes the

BirthdayBookstate schema withinAlreadyKnownin both primed and unprimed versions.

Primes are used to denote the “after” or “post” states. This schema does not change the

state of the system so the pre and post states are the same, that isknown′ = knownand

birthday′ = birthday. The symbols∆ andΞ are short-hand conventions used to identify

those schemas that change the state of the system (∆) and those that do not (Ξ)4.

As an example that changes the state of the system theAddBirthdayschema takes a

name and a date as inputs and adds them into theBirthdayBook:

AddBirthday
∆BirthdayBook
name? : NAME
date? : DATE

name? < known

birthday′ = birthday∪ name? 7→ date?

1.6.1 Schema Composition

In addition to simple inclusion, the schema calculus can be used to combine schemas

together to model more complex behaviour. For example, if a new state schema is

introduced to model the success or failure of operations then a more robust version of the

AddBirthdayoperation can be specified. An error reporting schema namedSuccesscould

be defined as:

4This is the standard usage of∆ andΞ within a Z specification however the notation allows a user to
re-define their own meanings for these symbols.
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Success
result! : REPORT

result! = ok

Using schemacompositionor linking this new state schema could then be combined

with theAddBirthdayandAlreadyKnownschemas to produceRAddBirthday:

RAddBirthdaŷ= (AddBirthday∧ Success) ∨ AlreadyKnown

In addition to schema conjunction ‘∧’ and disjunction ‘∨’ other forms of schema

calculus include negation ‘¬’, implication ‘⇒’, bi-implication ⇔, piping ‘>>’ and

sequential composition ‘o
9’. The definition sign ‘̂=’ allows one schema to be defined in

terms of others and this is sometimes known as ahorizontal schema. The resulting schema

represents the merge of the linked schemas which can be written out in full as:

RAddBirthday
∆BirthdayBook
name? : NAME
date? : DATE
result! : REPORT

(name? < known∧
birthday′ = birthday∪ {name? 7→ date?} ∧
result! = ok) ∨

(name? ∈ known∧
birthday′ = birthday∧
result! = already known)

This style of formal specification allows certain properties of a system to be proved and

schemas can also be specified at different levels of abstraction. The behaviour of a system

can also be explored without actually implementing the system itself.

Tool support for Z typically includes pretty printers, syntax checkers and type-checkers.

It is also possible to animate Z specifications — providing a partial implementation of the

specification in software — to aid the specification writer’s understanding of the system.
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A set-based notation like Z lends itself to animation using set-based functional languages

like Miranda [139] or Haskell [152]. Diller also presents a Prolog [160] based animation

example [47]. An overview of Z representation issues and tool support are discussed in

Section 5.1 of Chapter 5.

1.6.2 Object-Z

Object-Z [52, 174] is an extension of the Z specification language that provides object-

oriented structuring mechanisms. As with Z itself there are a number of object-oriented

Z variants including Z++ [125] and OOZE [3], however, Object-Z has been the most

successful.

A class in Object-Z is specified as a box that contains the features and operations of

the class and may also include generic parameters. A simple class implementing a generic

FIFO (First In First Out) queue from an example by Mahony and Dong [134] is presented

in Figure 1.8. A similar example is also used by Smith [174].

The generic parameterX in the name of the class box represents the as-yet undefined

elements that will be placed on the queue. The general structure of a class in Object-Z

consists of the following parts in order:

Visibility List The first item in the class is a visibility list which defines the interface for

instances of the class. In theQueueclass there is no visibility list so all the features

are implicitly visible.

Constants Any class constants are declared next. While there are no constants declared in

this specification a bounded queue could contain, for example, abufferSizeor length

constant to define the maximum size of the queue.

State SchemaA class represents a template for objects that are instantiations of the class.

The state of an object is an instance of thestate schemawhich is represented by

an unnamed schema box. As in Z, state variables are declared in the top part of

the schema. Any predicates in the formula part must be true and are referred to as

theclass invariant. In theQueueclass the value of the head of the queueh is only

specified for a non-empty sequence of items. Theattributesof a class consist of

the state variables along with any constants that have been declared. State variables

26



Queue[X]

items: seqX
∆

h : X

items, 〈 〉 ⇒ h = head(items)

INIT

items= 〈 〉

Join
∆(items)
item? : X

items′ = itemsa 〈item?〉

Leave
∆(items)
item! : X

items, 〈 〉
item! = h
item′ = tail(items)

Figure 1.8: Object-Z class for a generic FIFO queue.

declared above the∆ separator in the state schema are calledprimary variableswhile

those below are known assecondary variables. Secondary variables are subject to

change whenever an operation is performed. In this example the value of the variable

representing the head of the queue,h may change every time an item is removed from

the queue.

Initial Schema The Initial Schemais always named I and represents the initial state of

an object. The class invariant and the initial schema are conjoined to define theinitial

condition— in this case an initially empty sequence of items.

Operation SchemasThere are two operation schemas defining the available operations

on aQueue— a Join operation which adds an item to the back of the queue and a
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Queue[X]

items: seq X

∆

h: X

Join(item?)

Leave(item!)

Figure 1.9: Object-Z class diagram showing features of theQueueclass.

Leaveoperation which removes the item at the head of the queue. Operation schemas

contain a∆-list showing the primary attributes whose values may be modified by the

operation.

While the discussion of UML-like graphical representations and Z is delayed until

Chapter 4, Object-Z already includes a number of UML-like diagrams for illustrating

aspects of object-oriented specifications. An Object-Z class diagram summarising the

features of theQueueclass is presented in Figure 1.9. Chapter 3 also presents a case

study based on an Object-Z specification of a mass transit railway system.

Having already introduced the required background in FCA and Z and discussed

the motivation for the thesis, Chapter 2 presents a survey of FCA support for software

engineering.
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Chapter 2

A Survey of FCA Support for Software
Engineering

This chapter presents a literature survey of 47 academic papers reporting software

engineering applications for FCA. An early version of the work presented here has been

published in a paper co-authored with Richard Cole, Peter Becker and Peter Eklund [200].

The initial sections of the chapter introduce a framework based on the ISO12207

software engineering standard that is subsequently used to categorise the survey papers.

Additionally, a number of alternative classifications based on the target application

language and the reported application size are introduced. The results of the survey are

also presented using FCA and the approaches described in the papers are briefly discussed.

While the first half of the chapter presents a background survey that supports the first

of the motivations outlined in Section 1.2, the second half of the chapter represents a new

research contribution. An FCA-based analysis of the author collaboration and citation

patterns within the set of survey papers is discussed in Section 2.6. This approach is then

extended and the use of FCA as a tool for literature surveys in general is presented.

2.1 Understanding Software Engineering

To understand how software engineering can be supported by FCA some understanding of

what software engineering is, or at least the processes involved, is necessary. This section

of the paper sets out a framework that will be used to classify papers from a software
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Figure 2.1: The classic waterfall life-cycle model.

engineering development perspective.

The development of software has traditionally been described by life-cycle models.

These models grew out of a need to more effectively understand and manage the software

engineering process which has been characterised by failed, late, and bug-laden projects.

Royce [163] proposed the classic “waterfall” model which consists of sevenstepsor phases

that proceed in a linear fashion: System Requirements, Software Requirements, Analysis,

Program Design, Coding, Testing, and Operations. See Figure 2.1.

The waterfall model focuses heavily on the documentation produced during each

implementation phase and there may be some iteration between successive steps.

Royce realised that sometimes iterations happen across non-consecutive steps which is

undesirable. To address this he proposed some extensions to alleviate the “risk” which

largely focused on the production of additional documentation. The spiral model [20]

is an alternative life-cycle that directly incorporates risk analysis as one of four major

activities that also include: planning, engineering and customer evaluation. Starting in

the centre of a spiral the developers work through a planning phase, followed by risk

analysis, the engineering of a prototype system and then customer evaluation. The cycle

30



then repeats and each move around the spiral progresses outwards towards the final system

in an evolutionary fashion. Another life-cycle model that is a variant of the waterfall is the

“V” model [162] where each step down the left hand side of the “V” has a corresponding

validation or verification step on the right hand side. This model emphasises the role of

testing where requirements and design documents from the left hand side feed into the

validation activities on the right.

In addition to these three examples a number of other life-cycle models exist and the

most appropriate model to use for a given project may depend on a number of factors

including the type of project, the style of the developers and the organisational maturity of

both the developers and the customer. An alternative to the classic life-cycle approaches is

to use a meta-model that defines common software engineering activities independently of

a particular life-cycle model. Developers can then choose the most-appropriate life-cycle

for their project and the activities can be mapped onto the chosen model.

2.1.1 ISO12207 Software Engineering Standard

The ISO12207 Software Engineering Standard [100] describes such a meta-model for

software engineering life-cycle processes and the standard includes thirteen activities that

can be mapped onto a chosen life-cycle model. The first of the activities is related to

starting the methodology, another four are system related and the remaining eight relate to

the software itself. The thirteen activities are:

• Process implementation

• System requirements analysis

• System architectural design

• Software requirements analysis

• Software architectural design

• Software detailed design

• Software coding and testing

• Software integration

• Software qualification testing

• System integration
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• System qualification testing

• Software installation

• Software acceptance support

The standard notes that “these activities and tasks may overlap or interact and may

be performed iteratively or recursively”. From the IEEE Standard Glossary of Software

Engineering Terminology [99] the definitions of the software related activities are:

• requirements analysisThe process of studying user needs to arrive at a

definition of system, hardware, or software requirements.

• architectural design The process of defining a collection of hardware

and software components and their interfaces to establish the framework

for the development of a computer system.

• detailed designThe process of refining and expanding the preliminary

design of a system or component to the extent that the design is

sufficiently complete to be implemented.

• coding and testing Where coding is defined as “. . . the process of

expressing a computer program in a programming language” andtesting

is “the process of analyzing a software item to detect the differences

between existing and required conditions (that is, bugs) and to evaluate

the features of the software items”.

• integration The process of combining software components, hardware

components, or both into an overall system.

• qualification testing Testing conducted to determine whether a system

or component is suitable for operational use.

• installation The period of time in the software cycle during which a

software product is integrated into its operational environment and tested

in this environment to ensure that it performs as required.

• acceptance supportFormal testing conducted to determine whether or

not a system satisfies its acceptance criteria and to enable the customer to

determine whether or not to accept the system.
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In addition to the eight software related activities defined above an understanding of

software maintenance is also required.

2.1.2 Software Maintenance

The termsoftware maintenancetypically refers to the modification of a software system

that has already been deployed to the customer. The process of software maintenance

requires iteration through some or all of the previously defined activities and in terms of

the waterfall model it could be thought of as a feedback loop to previous stages. The IEEE

Standard Glossary of Software Engineering Terminology defines software maintenance as:

• software maintenanceThe process of modifying a software system or

component after delivery to correct faults, improve performance or other

attributes, or adapt to a changed environment.

The next section of this chapter uses these nine activities within a framework to classify

academic papers reporting the application of FCA to software engineering activities.

2.2 FCA in Software Engineering

We conducted a survey of 47 academic papers reporting software engineering applications

for FCA. While authors like Snelting [177] have provided an overview of software re-

engineering based on concept lattices there has been no broad survey of the literature. The

survey papers were analysed using FCA and a formal context was constructed with the

papers as the set of objects.

There is also a related body of literature describing the application of FCA to the

identification and restructuring of schemas in object-oriented databases, for example, the

work of Yahia, Lakhal, Bordat and Cicchetti [233], Schmitt and Conrad [167], and Godin,

Mineau, and Missaoui [83]. While a database typically forms the backbone of CASE

(Computer Assisted Software Engineering) tools this work is not considered within the

context of the survey.
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2.2.1 ISO12207 Categorisation

A first classification of the papers that considers the software-related ISO12207 activities

as attributes appears in Table 2.1. The intention was not to classify a paper according

to a single activity but to record all of the activities supported by the approach described

in the paper. Note also that although “coding and testing” appears as a single activity

in the standard it has been broken down into two separate attributes for the classification

context. This context actually represents a sub-context of the total set of survey attributes

and therefore represents a conceptual scale which captures the ISO12207 activities.

References to papers included in the survey use the naming format adopted by the

ResearchIndex (formerly known as “CiteSeer”) digital library [146]. Paper names are

composed of the first author’s surname, the last two digits of the year of publication, and

the first word of the title (excluding words like “an”, “the”, “a”, etc.). For example Krone

and Snelting’s paper entitled “On The Inference of Configuration Structures from Source

Code” and published in 1994 would appear asKrone94inference[122].

The concept lattice corresponding to Table 2.1 appears in Figure 2.2 and it can be seen

that 27 out of the 47 papers in total describe applications to bothsoftware maintenance

anddetailed design. These papers are typically reporting the use of FCA to identify class

candidates in legacy code or the maintenance of class hierarchies1. Considering the theory

behind the subconcept/superconcept ordering within a formal concept lattice this is an

obvious application.

An emerging body of literature related torequirements analysiscan also be seen with

12 of the 47 papers reporting application in this area. It should be noted, however, that

papers with common authors are typically reporting work that describes the same example.

Across the total set of survey papers it is also noteworthy that there are only two describing

applications totestingand none of the collection explicitly report application tosoftware

integration, qualification testing, installation, acceptance supportor coding.

1To avoid confusion the terms “class” or “class candidate” will typically be used to refer to Object-oriented
objects as opposed to formal objects in FCA.
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Ammons03debugging [5] × ×

Andelfinger97diskursive [6] ×

Arevalo03understanding-a [8] × ×

Arevalo03understanding-b [9] × ×

Ball99concept [11] × ×

Boettger01reconciling [24] ×

Bojic00reverse [21] × × ×

Canfora99case [34] × ×

Dekel02applications [45] × ×

Duwel98identifying [58] × ×

Duwel99enhancing [56] × ×

Duwel00bridging [59] × ×

Eisenbarth01aiding [62] × ×

Eisenbarth01feature [63] × ×

Eisenbarth03locating [64] × ×

Fischer98specification [70] × ×

Funk95algorithms [74] × ×

Godin93building [87] × ×

Godin95applying [84] × ×

Godin98design [82] × ×

Huchard99from [96] × ×

Huchard02when [97] × ×

Krone94inference [122] × ×

Kuipers00types [123] × ×

Leblanc99environment [126] × ×

Lindig95concept [128] ×

Lindig97assessing [132] × ×

Richards02assisting [155] ×

Richards02controlled [157] ×

Richards02recocase [158] ×

Richards02representing [156] ×

Richards02using [159] ×

Sahraoui97applying [166] × ×

Schupp02right [168] × ×

Siff97identifying [171] × ×

Snelting96reengineering [175] × ×

Snelting98reengineering [178] × ×

Snelting98concept [176] × ×

Snelting99reengineering [179] × ×

Snelting00software [177] × ×

Snelting00understanding [180] × ×

Streckenbach99understanding [189] × ×

Tilley03software [201] × ×

Tilley03towards [199] × ×

Tonella99object [204] × ×

Tonella01concept [203] × ×

vanDeursen98identifying [216] × ×

Table 2.1: Formal context considering the 47 papers in the survey as objects
and the ISO software engineering activities as attributes.
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Figure 2.2: The Formal Concept Lattice corresponding to the context in
Table 2.1. The objects are the 47 papers included in the survey while the
attributes are the activities defined in the ISO12207 standard.

Note that only object counts are shown on the diagram and the node colour also

indicates the distribution of objects. A lighter shade implies less objects while a darker

shade corresponds to a higher object count.

In addition to the attributes appearing in the context shown in Table 2.1, there were

133 attributes used in total to categorise the papers in the survey. These attributes included

the names of the authors, citations of other papers in the survey, the year of publication,

inputs, outputs, target application languages (e.g. C++, Java) and the “size” of any reported

application target.

2.2.2 Target Application Language

The context in Table 2.2 represents the application of the approach described within a

paper to a particular language. The attributes here are the programming languages: C, C++,

COBOL, FORTRAN, Java, Modula-2, Smalltalk, and the design or specification languages:

OMT, UML and Z. Both procedural and object-oriented languages are represented. The
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attribute values record the size of any reported target application in KLOC (“thousand

Lines Of Code”) — for example, 106 KLOC represents an application containing 106,000

lines of source code. KLOC is also sometimes referred to as SKLOC (Source Thousand

Lines Of Code) and is a metric that is often reported to indicate project size in software

engineering. Where a paper contains multiple examples for the same language only the

largest application size is shown.

While there is some debate about the usefulness of size-oriented metrics like

KLOC [154] it does give a raw indication of application size. Within the set of survey

papers it may also be indicative of tool support. The application of these techniques to

moderately sized projects demonstrates the potential for real-world application.

A number of the papers report application to a specific language but do not report the

size of a particular application and the KLOC value for these papers appears as “0” in the

context. It is also interesting to note that where a non-zero value repeats in the context it

typically refers to the same example being reported in a number of papers. For example,

the 1.6 KLOC C application appears in the papersFunk95algorithms, Krone94inference,

Snelting96reengineering, Snelting98conceptandSnelting00software. Similar patterns can

also be seen for the 106 KLOC FORTRAN, 100 KLOC COBOL and 1.5 KLOC Modula-2

applications.

Figure 2.3 presents a concept lattice that treats Table 2.2 as a simple one-valued context

where any KLOC value≥ 0⇒ gIm. It can be seen that 14 of the 47 papers do not report

any application to a particular programming or design language. Also of note is the paper

Snelting00software[177] which reports applications to all of the programming languages

except Smalltalk. This is a paper by Snelting that surveys earlier results from a number of

papers he has either authored or co-authored.

2.2.3 Reported Application Size

The line diagram in Figure 2.4 also summarises the context in Table 2.2 as an inter-ordinal

scale that only considers the maximum reported size in KLOC across all programming

languages for each paper. Note that 17 of the 47 papers now appear at the supremum. In
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Ammons03debugging 0
Andelfinger97diskursive
Arevalo03understanding-a 0
Arevalo03understanding-b 0
Ball99concept 0
Boettger01reconciling
Bojic00reverse 0
Canfora99case 200
Dekel02applications 0
Duwel98identifying
Duwel99enhancing
Duwel00bridging
Eisenbarth01aiding 0
Eisenbarth01feature 76
Eisenbarth03locating 1,200
Fischer98specification
Funk95algorithms 1.6
Godin93building 0
Godin95applying
Godin98design
Huchard99from 0
Huchard02when 0
Krone94inference 1.6
Kuipers00types 100
Leblanc99environment 0 0 0 0
Lindig95concept
Lindig97assessing 5 106 1.5
Richards02assisting
Richards02controlled
Richards02recocase
Richards02representing
Richards02using
Sahraoui97applying 47
Schupp02right 0
Siff97identifying 28
Snelting96reengineering 1.6
Snelting98concept 1.6 0 106 1.5
Snelting98reengineering 0
Snelting99reengineering 0 9
Snelting00software 1.6 0 0 106 9 1.5
Snelting00understanding 0 12
Streckenbach99understanding 0 12
Tilley03software 0
Tilley03towards 0
Tonella99object 21
Tonella01concept 249
vanDeursen98identifying 100

Table 2.2: A Formal Context showing reported application languages for the
47 papers in the survey. The attribute values represent the size of the application
in KLOC (“thousand Lines Of Code”). A KLOC value of “0” indicates that the
paper reported application to a particular language but no size was quoted.
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Figure 2.3: Formal Concept lattice based on the context in Table 2.2 showing
reported application by language.

addition to the 14 papers that do not report application to a particular language this also

includes those papers reporting exclusive application to design or specification languages.

KLOC is not considered to be a “meaningful” measure for UML, OMT, and Z.

From Figure 2.4 it can be seen that there are eight papers in the survey reporting

application to systems of 100 KLOC or more, however, these actually refer to only five

different examples. The analysis of a 106 KLOC FORTRAN system is discussed in the

three papers:Lindig97assessing, Snelting98conceptandSnelting00software. In addition

the 100 KLOC COBOL examples reported by Kuipers and Moonen inKuipers00typesand

Van Deursen and Kuipers invanDeursen98identifyingalso describe the same application

example.

The largest application in the survey describes the analysis of a 1,200 KLOC

semiconductor testing tool written in C. The work by Eisenbarth, Koschke and Simon in

Eisenbarth03locating[64] is an order of magnitude larger than any of the other examples
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Figure 2.4: An Inter-ordinal scale based on the context in Table 2.2 using the
maximum KLOC across all programming languages for each paper.

and demonstrates that FCA-based software analysis tools are capable of handling real-

world projects. An overview of the tool implementations described in these papers is

presented in Section 5.2.10.

2.3 Support for Late-phase Activities

Figure 2.5 again presents the ISO12207 categorisation of the 47 survey papers, however,

the paper names are listed instead of the counts shown in Figure 2.2 . Thirty-three of the

survey papers have been classified asSoftware Maintenanceapplications. Additionally, the

work of Eisenbarth et al. [62, 63, 64] has also been categorised asArchitectural Design. The
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Figure 2.5: The ISO12207 categorisation diagram from Figure 2.2 showing
the paper names.

papers by Ammons, Mandelin, Bodik and Larus [5], and Ball [11] incorporateTestingand

these are the only two papers in the survey to address this activity. Bojic and Velasevic [21]

discuss applications to round-trip engineering and recovering UML use-cases. Their work

has therefore also been included under theRequirements Analysiscategory even though it

is concerned with re-engineering existing systems.

Eisenbarth et al. describe a technique for locating the computational units within

software that actually implement a feature or functionality of interest. They combine both

static and dynamic analysis and of particular note is the application of their technique to

the 1,200 KLOC example mentioned in the previous section. A number of test cases or

“scenarios” are constructed which cover the use-cases of interest and these are treated as

the formal objects in their analysis. The computational units executed during runs of the

program are then considered as the formal attributes. The attribute contingents of object

concepts in the resulting lattice are of particular interest since they contain the program

artefacts introduced by specific scenarios.
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The work of Ammons et al. represents one of the few existing approaches that

incorporates both formal methods and FCA. The work was briefly summarised in

Section 1.4 but essentially uses FCA to aid in the testing and debugging of temporal

specifications. Large specifications are verified using tools that check them against a

number of programs and these checks can produce hundreds or thousands of execution

traces. A concept lattice is used to cluster program execution traces together so that an

expert can assess and classify clusters of traces rather than classifying each of the traces

individually.

Ball examines test-coverage by comparing the implicational logic in the concept lattice

generated from traces extracted from test programs with dominance and post-dominance

relationships extracted by static code analysers. A computer program essentially consists

of a large number of instructions and each instruction is identified by its position within

the program. A run of a computer program produces atrace listing the sequence of

instructions that were run. Two notions concerning instructions, with respect to a collection

of traces, are important:dominanceand pre-domination. An instructionx dominates

another instructiony if any trace prefix that ends ony containsx. In other wordsx dominates

y if the only way to executey is to have already executedx. Similarly, x post-dominatesy

if any trace postfix starting withy also containsx. In other wordsx post-dominatesy if any

execution ofy indicates thatx will subsequently be executed. Any additional implications

in the concept lattice are also considered to see if they can be removed by the introduction

of a new test.

Bojic and Velasevic report a similar approach but additionally the artefacts within the

attribute contingents are arranged as UML diagrams using a UML reverse engineering

tool. In this way the specific parts of the software architecture related to use-cases can be

extracted and viewed. The capability is particularly useful in the preparation of traceability

in the software engineering process whereby aspects of the system architecture can be

traced back to requirements.

Interestingly, the papers by Ammons et al., Ball, Bojic and Velasevic, and Eisenbarth et

al. all deal with the dynamic analysis of software behaviour. Across the collection of papers
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a wide variety of inputs for analysis are used including source code, class files, profiler

output, system descriptions and documentation. The choice of formal objects include code

segments, language features, and the names of packages, classes and methods.

The remaining 27 papers can be broadly categorised into three groups:

• analysis of software configurations

• modularisation of legacy code

• transformation of class hierarchies

and these approaches are summarised in Sections 2.3.1, 2.3.2, and 2.3.3 respectively.

2.3.1 Analysis of Software Configurations

Snelting [175, 176, 122, 74] used FCA to analyse preprocessor commands in legacy C

programs including “Xload” and “RCSedit” in order to examine the configuration structure.

The formal objects are code fragments included by the preprocessor commands, while the

formal attributes are disjunctive expressions governing the inclusion of the code fragments.

The concept lattice is constructed and the notion of an interference is introduced. An

interferenceis a meet-reducible concept with a non-empty extent. Two types of undesirable

interference are identified, those corresponding to illegal configurations — for example, an

interference between XWINDOWS and DOS — and those corresponding to orthogonal

attributes — for example, an interference between a variable related to the graphics

subsystem and one related to the operating system.

In order to make the resulting concept lattices more manageablehorizontal

decompositionsare introduced [74]. The decompositions are based on the idea of a

horizontal sum where the constituent elements of the sum are usually disjoint. However,

experiments with legacy systems revealed that few configuration lattices can be directly

decomposed into a horizontal sum of disjoint sub-lattices. In order to simplify the

configuration structure the notion of ak-interferenceis introduced. Ak-interference is

a collection ofk meet-reducible incomparable concepts whose down-set removal yields a

decomposition into a disjoint horizontal sum. The concepts involved in suchk-interferences

are of particular interest since they are most likely interferences between orthogonal aspects

of the system configuration.

43



Other techniques to simplify the concept lattice include limiting the nesting depth

of preprocessor commands considered and merging rows which differ by fewer thank

elements. These techniques are of use when the objective is to get an overview of the

configuration structure present in a software program.

2.3.2 Modularisation of Legacy Code

Legacy programs written in languages where access to common data structures is normally

the case, e.g. FORTRAN and COBOL, have been considered by Van Deursen and

Kuipers [216], Kuipers and Moonen [123], Lindig and Snelting [132], and Canfora,

Cimitile, De Lucia, and Di Lucca [34].

Van Deursen and Kuipers compare the use of formal concept analysis for grouping

fields within a large legacy COBOL program to that of hierarchical clustering. Hierarchical

clustering involves the definition of a distance metric between COBOL procedures,

extending the metric to sets of procedures, starting with every procedure in its own cluster

and then repeatedly merging the two closest clusters to produce a binary tree of clusters.

This approach is generally criticised because it can yield different inputs for the same data

if several clusters are equidistant and different results are obtained for slightly different

distance metrics. In contrast, the results produced by FCA are always the same, not

dependent on the definition of a distance metric, and were much closer to that produced

by software engineers familiar with the legacy system. Since the objective was to focus

on domain specific procedures rather than those performing system functions, procedures

having a high degree of fan-in were judged as being system procedures and were discarded.

This judgement was controlled by an operator set threshold.

Canfora et al. follow a similar approach but are interested in organising a legacy

COBOL system into components suitable for distribution via the Common Object Request

Broker Architecture (CORBA). They consider programs and their use of files representing

relational tables. The formal context was pruned by removing objects and attributes in

isolated concepts — those concepts that are directly below the top concept and directly

below the bottom concept and therefore do not have any intent or extent intersection with

44



any other concepts. Relational table files having the same structure were also merged. This

case arises when several files are used to perform some operation on a table, for example,

sorting. Programs that used only a single file were also removed. Canfora et al. apply their

rules until no more formal objects or formal attributes can be removed. The result was a

concept lattice that was almost horizontally decomposable — in the sense of Snelting et al.

— into four domain areas, except for a number of interferences corresponding to operations

involving more than one domain area.

The task of deriving object-oriented models from legacy systems written in C has also

been considered by Sahraoui et al. [166], Siff and Reps [171], and Tonella [203]. The

general approach is to consider C functions as formal objects and the attributes as either

commonly accessed data structures or fields within commonly used structures.

Both Siff and Reps, and Tonella are concerned with re-organising the functions into a

different, perhaps more fine grained, module structure based on the access of functions to

either common data structures [203], or fields within commonly accessed data types [171].

In Tonella’s approach a modular structure results from a partitioning of the formal

objects. Candidate partitions are generated from a choice of concepts having pairwise

disjoint extents. Each formal attribute is then assigned to the chosen concept that has the

largest number of objects with that attribute, i.e. for attributem we find conceptc that

maximisesm′∩ Ext(c) and assignm to that concept. One partitioning set of concepts is

considered better than another if the number of objects having an attribute not assigned to

their concept (i.e. the concept from the chosen set containing the object) is smaller and the

number of concepts is larger. The approach searches over the possible choices of concepts

seeking to optimise these two criteria.

2.3.3 Transforming Class Hierarchies

Snelting [177], and Snelting and Tip [178, 179, 180] explain a mechanism to re-organise

class hierarchies using FCA. Their aim is to find imperfections in the design of the

hierarchies based on how the class is actually used by applications. Variables in C++

are taken as formal objects and methods and fields of the objects to which the variables
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refer are taken as formal attributes. A variable is associated with a field or method if that

variable is used to access the method or field. A number of rules are employed to account

for assignment between variables and conservatively account for dynamic dispatch. The

main focus of investigation is the objects that exist during a run of a program and Snelting

and Tip access these using static analysis and via the medium of variables.

Schupp, Krishnamoorthy, Zalewski and Kilbride [168] consider class hierarchies in

the C++ Standard Template Library (STL). They have classes as formal objects and

documented properties of the classes as formal attributes. The notions of “well abstracting”,

“lacking orthogonality” and “lacking refinement” are then introduced to describe class

libraries. However, rather than inspecting various aspects of the structure they attempt

to construct the whole concept lattice, render it and then draw conclusions. Inspection

of aspects of the STL reveal a very regular structure. An example presented by Tilley,

Cole, Becker and Eklund [200] shows three complementary pairs of attributes: unique and

multiple associative, sorted and hashed, and pair and simple associative. Complementary

attributes are related byexclusive or— in other words all objects have exactly one of the

two attributes.

Godin and Mili [87] consider a context where the formal objects are messages (methods

in Smalltalk) and formal attributes are classes. The aim of their approach is to build

analysis-level class hierarchies that can be maintained as the class evolves through design

and implementation phases. They consider concepts having an empty attribute contingent,

i.e. those not labelled by a class, as new class candidates. Godin, Mili, Mineau, Missaoui,

Arfi, and Chau [82] further incorporate static call graph information into the concept lattice.

While Leblanc, Dony, Huchard and Libourel [126] describe an environment for

re-engineering class hierarchies, Huchard and Leblanc [96] consider a concept lattice

generated with classes as formal objects and attributes derived from method signatures.

Their approach thereby includes information about parameter types and return values. Each

concept is considered as a candidate for a Java interface.

Huchard, Roume and Valtchev [97] address the problem of representing and analysing

data via FCA where relationships exist between the formal objects. The binary inter-object
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relationships are represented by arelational context family. Their approach is applied

to UML class diagrams representing both classes and association relationships between

classes where the classes are considered as the formal objects and the variables and methods

as attributes.

Tonella and Antoniol [204] attempt to recover design patterns in C++ source code using

a context in which the formal objects aren-tuples (in practice triples are used) whose

elements are types in the software, and formal attributes are triples of the form (i, j, r)

wherei and j are indexes into then-tuple andr is a relation type. For example, an object

(A,B,C), being associated with an attribute (1,2,derived− from) would indicate thatA is

derived fromB. Tonella and Antoniol discover as one of the concepts in the concept lattice

the well known “adapter pattern”.

The work of Aŕevalo [8], and Aŕevalo, Ducass and Nierstrasz [9] is also concerned

with detecting patterns in software via FCA. While their work is similar to that of Tonella

and Antoniol they apply the approach to Smalltalk and also take into account behavioural

information related to the derivation of subclasses. These behavioural dependencies result

when a method is added, modified, overridden or removed in a subclass.

While not actually related to the transformation of classes, Dekel’s paper [45] analyses

Java classes to suggest source code reading order for code review and inspection purposes.

Having provided a brief overview of the late-phase approaches, the existing techniques

that support early-phase software engineering activities are now discussed.

2.4 Support for Early-phase Activities

While the bulk of the papers in the survey report applications to late-phase activities, 14

of the 47 papers are concerned with early-phase software engineering. The techniques

described in 27 of the 33Software Maintenancepapers also necessitate design reviews or

at least proposed changes to the design of legacy systems and as such they have also been

categorised underDetailed Design. This section will present those approaches that do not

fall under theSoftware Maintenancecategory, that is those approaches that apply to the

development of new systems rather than the re-engineering of existing systems. The main
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approaches from these 14 papers are summarised in the following sections.

2.4.1 Requirements Analysis

Andelfinger’s thesis inAndelfinger97diskursive[6] describes a discursive environment

for requirements gathering based on Habermas’ philosophical theory of “communicative

rationality” — a discursive form of collective reasoning. Habermas described a somewhat

idealistic discursive environment that attempts to make any agendas during negotiation

obvious and considers all viewpoints equally. Andelfinger presents this environment as a

way of addressing the so-called “pragmatic gap” between the views of users and developers.

Within the thesis FCA is used as a question answering and discussion promotion tool.

The value of unlabelled concepts is highlighted as it promotes questions about what is

missing which may be indicative of incomplete requirements. While the three case studies

presented by Andelfinger are not directly related to software engineering they parallel

standard problems in requirements gathering. It is interesting to note that the second

case study describes gathering requirements for an FCA-based retrieval system for the

library at the Centre of Interdisciplinary Technology Research (in German the “Zentrum

für Interdisziplin̈are Technikforschung”(ZIT)) [161].

2.4.2 Use-case Analysis

Use-cases are a tool used in requirements gathering and analysis where a task is

described from a certain perspective or role. Typically these descriptions are written

in natural language although sometimes controlled vocabularies are used. Böttger

and Richards et al. describe a technique to reconcile use-cases in the papers:

Richards02representing[156], Richards02controlled[157]. Richards02using[159],

Boettger01reconciling[24], Richards02assisting[155] and Richards02recocase[158].

Their technique reconciles multiple use-cases written by different stakeholders. The

approach could be used by system designers to identify both the overlap between use-cases

and points of conflict or difference between them.
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Their tool RECOCASE (RECONciling CASE tool) exploits a Prolog answering system

called ExtrAns and uses LinkGrammar — an English parser that uses link grammar theory

— to convert sentences into syntactically legal “flat logical forms” (FLFs). A context is

produced where the sentences are the objects and the FLFs are broken into word phrases

which are treated as the attributes. A number of the papers also report a brief study of

line diagram comprehensibility for comparing use-case descriptions using second year

university Analysis and Design students.

The work of D̈uwel in Duwel99enhancing[56] and D̈uwel and Hesse in

Duwel00bridging[59], andDuwel98identifying[58] attempts to identify class candidates

in use-cases. The use-cases themselves are considered as objects in a formal context and

nouns identified within the text are considered as attributes. A case study that contrasts

this approach with an existing design for a mass-transit railway system is reported in

Tilley03software[201] and the details are presented in Chapter 3.

2.4.3 Software Component Retrieval

In Lindig95concept[128] Lindig describes a retrieval system that could be used for

retrieving software components from a library indexed by keywords. The formal context is

constructed using the components as objects and the keywords as attributes. An example

based on 1,658 online documents relating to Unix commands is presented. The retrieval

system provides a query by refinement interface in which a boolean query,B, is mapped

to the formal concept, (B′,B′′). The lower cover of this concept within the lattice is then

offered as a set of possible refinements to the user. Retrieval applications are also discussed

in Godin95applying[84]. Outside of the software engineering domain FCA has also been

used for more general information retrieval applications, for example the work of Carpineto

and Romano [35] for text document retrieval and the ZIT library retrieval system discussed

by Wille and Rock [161].

Fischer builds on the component retrieval work of Lindig in the paper

Fischer98specification[70]. The approach combines formal methods and FCA for

browsing and navigating a software component library. Components in the library
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are associated with formal specifications that capture their behaviour in the form of

axioms describing pre-conditions and post-conditions. The formal specifications are

then used instead of simple keyword searches to retrieve components based on explicit

properties required for the components selection or based on implicit similarity with other

components.

A formal context is constructed using the component specifications as both the objects

and attributes. Additionally, functions or partial functions within the specifications are

also considered as formal attributes. Automated theorem provers are used to deduce valid

relations between pairs of components over a number of different relation types including

refinement and matching. A formal concept lattice is then computed that is used as a

structure for navigating and retrieving components from the library. The resulting lattice

can also be used to improve the library. Unlabelled concepts and extents containing

intuitively “unexpected” components may indicate missing attributes or features that can

be added to the library.

The author’s own work reported inTilley03towards[199] also explores the application

of formal methods, in particular formal specification in Z, and FCA. FCA is used

to facilitate the visualisation and navigation of Z specifications and a tool prototype is

discussed. The approach and implementation are detailed in Chapter 4 and Chapter 5

respectively.

The work shares a number of parallels with that of Fischer described above. For

example, both approaches provide browsing and navigation over specifications describing

pre-conditions and post-conditions. However, while both Fischer and Lindig used the

concept lattice as a navigation structure, the work described here also uses line diagrams

to aid in a user’s understanding of a formal specification. Fischer experimented with

lattice visualisation but found the underlying concept lattice too large and complex for

presentation. These problems are addressed here via a number of abstraction mechanisms

which are described in Section 4.3.
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2.5 Summary of Results

The preceding sections of the chapter have provided an overview of FCA applications

to software engineering via a paper survey. From the initial ISO12207 categorisation

of the papers it is evident that the majority describe software maintenance and re-

engineering applications and future research is likely to remain in this area. In these

later stages the software is already highly structured and therefore more amenable to

analysis than in the earlier phases where things are less well-defined. However, the survey

does include a number of papers reporting applications to the early-phase approaches of

requirements analysisandarchitectural design. None of the papers supportacceptance

support, integration, coding, installationor qualification testingand the papers by Ball,

and Ammons et al. stand out as the onlytestingrelated applications.

Applications for the approaches described in the papers cover a range of procedural,

object-oriented and design languages. The procedural applications are typically looking at

ways of re-engineering the code in a modular or object-oriented fashion by exploiting the

subconcept/superconcept structure inherent in the concept lattice. However, the common

thread running through all the papers is the use of FCA to extract understandable structures

that organise the artefacts of software systems.

Eight of the papers describe the use of FCA-based approaches to analyse or re-engineer

applications of 100 KLOC or more. The largest of these examples, reported by Eisenbarth

et al., is the analysis of 1,200 KLOC of control software for a semiconductor testing tool.

These papers demonstrate applicability and scalability beyond mere toy examples to real

world software engineering problems with tool support.

2.6 FCA as a Literature Survey Tool

While the survey analysis in the first half of the chapter described attributes that were

specific to the domain of software engineering the remainder of the chapter examines two

attributes that apply to academic papers in general. Section 2.6.1 explores collaboration

between authors within the set of survey papers while Section 2.6.2 explores the “impact”
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Figure 2.6: Lattice showing collaboration between authors within the set of
survey papers. Note that only papers where the authors have worked with
different co-authors appear.

of the papers based on the citations within the papers. An existing citation impact

mechanism — the ResearchIndex digital library — is also introduced in Section 2.6.2 for

comparison.

2.6.1 Author Collaboration

A summary of collaboration between authors within the set of survey papers is presented in

Figure 2.6. This concept lattice represents those authors who have collaborated on papers

with different authors. There are 13 papers at the top of the lattice whose authors only

appear once across the 47 papers or who have only worked with the same co-authors. Only

the size of the object contingent which represents the number of papers is shown for each

concept.

The diagram can be horizontally decomposed into eight sub-lattices which indicates

that research has been performed rather independently within these research groups. The

largest of these groups are led by Snelting, Huchard, Godin, Boettger and Richards, and

Hesse and there are no joint publications across these groups. Each of the structures below
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these researchers represent collaboration across multiple papers containing at least five

different authors with the common author, or authors, appearing at the top.

Snelting’s collaboration with a number of different authors is the likely reason for

the large number of language applications recounted inSnelting00software. Snelting has

authored or co-authored ten of the papers — the highest number of any author in the

survey. Three of these papers are co-authored with Tip and whileSnelting98reengineering,

Snelting99reengineeringand Snelting00understandingrepresent updated versions of the

same paper it can be seen from Figure 2.3 that each paper includes examples with

applications to different languages.

While the structure below “Snelting” has a high degree of “fan-out” the structures

beneath “Huchard”, “Godin”, and “Boettger” are more linear. The papers below

“Boettger and Richards”, for example, result from common subsets of authors across

a number of papers that are typically reporting different aspects of the same work.

Boettger01reconcilingincludes Schwitter and Mollá among the authors and this paper

provides details of the ExtrAns tool which they implemented [170, 169].

The 13 papers represented by the count at the top of Figure 2.6 do not share any

intersection of authors with other papers in the survey set. They have been omitted to

increase the readability of the line diagram. These papers represent concepts that are

only connected to the top and bottom elements of the lattice. Alternatively, they can

be considered as sub-lattices resulting from horizontal decomposition that contain only

a single concept in addition to the top and bottom elements.

Figure 2.7 presents an image produced by Snelting’s KABA tool [189, 177] showing

horizontal decompositions in Java code. The image is taken fromSnelting00software. The

problem of displaying diagrams with a high degree of fan-out at the top and high fan-

in at the bottom is overcome by effectively turning the top and bottom elements of the

lattice into rails. This style of display would also be a suitable representation for the author

collaboration in Figure 2.6.
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Figure 2.7: Image produced by Snelting’s KABA tool showing horizontal
decompositions in Java code. This image appears as Figure 8 in
Snelting00software[177].

2.6.2 Citation Patterns

As a whole the papers included in the survey embody the ideas of a particular community

or sub-culture — the community of researchers applying FCA to software engineering. In

addition to identifying collaboration structures within this community it is also possible to

gain some insight into the perceived “impact” or influence of a particular paper. The citation

patterns within the set of survey papers provide some measure of a paper’s influence, where

papers with the most impact are considered to be highly cited.

Figure 2.8 presents a line diagram showing the transitive closure of citations within

the set of survey papers. If a paperB cites paperC, and paperA cites paperB then A

transitively citesC. For example, the paperBall99conceptcites among others the paper

Siff97identifyingwhich in turn citesLindig97assessing. SoBall99conceptindirectly cites

Lindig97assessing. The algorithm to compute the closure is discussed later in this section.

The attribute labels linked to the top of the concepts represent papers which have been

cited by other papers within the survey collection while the object labels linked to the

bottom of concepts represent papers which contain citations. At the top of the line diagram

there are 9 papers listed and these papers have not cited any of the other literature within

the survey set. There are a number of explanations for the location of these papers. The

earliest papers in the survey,Godin93buildingandKrone94inference, by definition have no

earlier work to cite within the survey collection.Andelfinger97diskursiveis a paper written
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Figure 2.8: Formal concept lattice showing transitive closure of citations
within the set of survey papers.
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in German and the list of citations was unavailable. The remaining papers all cite the work

of Wille as FCA background but do not build directly on any of the work described in the

other papers.

At the bottom of the diagram are 20 papers which are not cited within the survey

collection. Papers with earlier publication years appear to have been ignored by the

community while more recent papers may not have been around long enough to be cited

yet. Andelfinger97diskursivealso appears in this list and this could be because it is the only

German language paper in an otherwise English language set.

Papers with the most impact appear at the top of the diagram with long chains (i.e.

containing many concepts) beneath them. It can be observed that most of the work is

nearly linear in terms of citations which reflects some coherence within the community.

For example, Snelting and Godin cite each other’s work before large forks appear in the

structure.

The structure down the right hand side of the line diagram is also interesting. The

papers by B̈ottger and Richards et al. either contained no citations within the survey set

or they cited their own work inBoettger01reconciling. Richards02using, however, cites

Snelting00softwarewhich connects their work back into the main “trunk”.

Computing the Citation Closure

The algorithm used to compute the closure of citations within the set of survey papers is

presented in Figure 2.9. The algorithm takes as input a contextK representing citations

of other papers in the survey.G is the set of papers andM is the set of cited papers.

Here G = M. For example, the paperBall99conceptin Table 2.3 cites the papers

Siff97identifying, Snelting96reengineeringandSnelting98reengineering. Note that uncited

papers have been excluded from the attribute set to increase the readability of the table.

The outer loop of the algorithm contains a terminating condition. The contextKold

stores a copy of the context at the start of each iteration and if no further changes occur then

the algorithm terminates andK contains the citation closure. This is a simple adaptation

of the algorithm used for computing the closure on a set of functional dependencies during

relational database normalisation [65]. The next two loops iterate along each row and if
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Ammons03debugging
Andelfinger97diskursive
Arevalo03understanding-a × × ×

Arevalo03understanding-b × × ×

Ball99concept × × ×

Boettger01reconciling
Bojic00reverse × ×

Canfora99case × × ×

Dekel02applications × × × ×

Duwel98identifying ×

Duwel99enhancing ×

Duwel00bridging × × × ×

Eisenbarth01aiding × × × × × × × × ×

Eisenbarth01feature × × × × × × × × ×

Eisenbarth03locating × × × × × × × × × × ×

Fischer98specification × × × × × × ×

Funk95algorithms × ×

Godin93building
Godin95applying ×

Godin98design × × ×

Huchard99from ×

Huchard02when × × ×

Krone94inference
Kuipers00types × × × × × × ×

Leblanc99environment ×

Lindig95concept ×

Lindig97assessing × × ×

Richards02assisting ×

Richards02controlled
Richards02recocase ×

Richards02representing
Richards02using × ×

Sahraoui97applying × × ×

Schupp02right
Siff97identifying × × ×

Snelting96reengineering × ×

Snelting98concept × × × × × ×

Snelting98reengineering × × × × × ×

Snelting99reengineering × × × × × × × × ×

Snelting00software × × × × × × × ×

Snelting00understanding × × × × × × × ×

Streckenbach99understanding × × ×

Tilley03software × × ×

Tilley03towards
Tonella99object × × × ×

Tonella01concept × × × × × ×

vanDeursen98identifying × × × ×

Table 2.3: Formal context showing direct citations within the set of survey
papers. Here the objects are the papers and the attributes are the paper citations.
Note that uncited papers have been excluded from the attribute set to increase
table readability.
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(p, cp) ∈ I then paperp is citing papercp. The innermost loop traverses the (indirect)

citationsic within the cited papercp. The citations for paperp are then updated if there is

a citationic in papercp that is not already in the contextp.

The closure computed for the direct citations in Table 2.3 appears in Table 2.4 and this

is the context represented by Figure 2.8. While all of the survey papers used to compute

the citation closure were included in the context they have been excluded from the attribute

sets in Tables 2.3 and 2.4 to increase table readability.

Although the closure context was computed automatically the direct citation context

used as input to the closure algorithm was constructed by hand. There is, however, an

alternative – the automatically generated citation counts available via ResearchIndex [146].

The ResearchIndex Digital Library (CiteSeer)

ResearchIndex is a scientific digital library project that was originally a demonstration site

for the NEC Research Institute’s CiteSeer software. CiteSeer was designed to automatically

gather and index citations from papers published on the World Wide Web (WWW).

Computer Science literature was chosen as the domain for the project and the library now

claims to be “Earth’s largest free full-text index of scientific literature”. Over 530,000

documents written by more than 602,300 authors are indexed by the system.

Citation indexing links articles based on a bibliography of cited articles or references

within one paper being matched against the titles of other documents within the database.

This process is automated in ResearchIndex and both papers cited within a document and

papers citing a document can be retrieved. This form of document linking also allows

research trends over time to be investigated. Papers cited by a document reflect the

time before publication while papers citing a particular document represent the time after

publication.

The ResearchIndex digital library is constructed autonomously and papers are being

continually added to the database. Search results from Web search engines containing

terms like “papers”, “publications” and “postscript” are used to find potential papers for

indexing. Papers in Postscript and PDF format are downloaded from the Web and converted

to text. To check if the document is a research publication a search of the text is made for
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Inputs

Let K := (G,M, I ) be a context containing direct paper citations

Variables

Let Kold := (∅,∅,∅) be an initially empty context

Let p be a survey paper

Let cpbe a cited paper

Let ic be an indirect citation

Outputs

Let K be an updated context containing the closure of paper citations

Algorithm

WHILE K , Kold LOOP

Kold := K

FOR eachp ∈ G LOOP

FOR eachcp ∈ M LOOP

IF (p, cp) ∈ I THEN

FOR eachic ∈ M LOOP

IF (cp, ic) ∈ I and (p, ic) < I THEN

I := I ∪ (p, ic)

END IF

END LOOP

END IF

END LOOP

END LOOP

END LOOP

Figure 2.9: Algorithm to compute the citation closure within the set of survey
papers.
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Ammons03debugging
Andelfinger97diskursive
Arevalo03understanding-a × × × × × × × × × × × ×

Arevalo03understanding-b × × × × × × × × × × × × ×

Ball99concept × × × × × × × × × × ×

Boettger01reconciling
Bojic00reverse × × × × × × × × ×

Canfora99case × × × × × × × × × × × ×

Dekel02applications × × × × × × × × × × ×

Duwel98identifying × × × × ×

Duwel99enhancing × × × × ×

Duwel00bridging × × × × × × × × × × × × ×

Eisenbarth01aiding × × × × × × × × × × × × × × × × × ×

Eisenbarth01feature × × × × × × × × × × × × × × × × × ×

Eisenbarth03locating × × × × × × × × × × × × × × × × × × ×

Fischer98specification × × × × × × × × × × ×

Funk95algorithms × × ×

Godin93building
Godin95applying ×

Godin98design × × ×

Huchard99from ×

Huchard02when × × × × × × × × × × × × × ×

Krone94inference
Kuipers00types × × × × × × × × × × × × × × × ×

Leblanc99environment ×

Lindig95concept ×

Lindig97assessing × × × ×

Richards02assisting ×

Richards02controlled
Richards02recocase ×

Richards02representing
Richards02using × × × × × × × × × × × × × × × × ×

Sahraoui97applying × × × × × × × × ×

Schupp02right
Siff97identifying × × × × × × × × ×

Snelting96reengineering × ×

Snelting98concept × × × × × × × × ×

Snelting98reengineering × × × × × × × × × ×

Snelting99reengineering × × × × × × × × × × × ×

Snelting00software × × × × × × × × × × × × × × ×

Snelting00understanding × × × × × × × × × × × × ×

Streckenbach99understanding × × × × × × × × × × × × ×

Tilley03software × × × × × × × × × × × × × ×

Tilley03towards
Tonella99object × × × × × × × × ×

Tonella01concept × × × × × × × × × × × × ×

vanDeursen98identifying × × × × × × × × × × ×

Table 2.4: Formal context representing closure of citations within the set of
survey papers. Note that uncited papers have been excluded from the attribute
set to increase table readability.
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a bibliography or reference section. The citations in the bibliography are then exploited

for document linking using a process known as Autonomous Citation Indexing (ACI) [81].

ACI works by automatically matching the citations contained in the bibliography section

to the titles of other documents in the ResearchIndex database. There are many different

citation styles and the system must be able to recognise variations that refer to the same

document.

ResearchIndex also classifies some documents as being eitherauthorities or hubs.

Authorities are documents that are considered to be authoritative because they are highly

cited by other papers. Hubs are documents, typically survey papers, that cite a large number

of authorities in a particular area. They provide a good point of introduction to the literature

in a particular field. With respect to Figure 2.8 authorities would appear as attributes at the

top of a long chain because they are highly cited, while hubs are likely to appear as objects

at the bottom of long chains because they contain many citations.

2.7 Comparing Paper Impact via Citation Count

Table 2.5 presents a summary of citation counts from ResearchIndex for the 47 survey

papers in July, 2003. The table also includes the corresponding count for the number of

direct citations from the context in Table 2.3 and the citation closure count from Table 2.4.

The papers are sorted in descending order of ResearchIndex count and then alphabetically

where two or more papers have the same count.

The table contains a number of interesting features. First, it can be seen that the

count of citations under closure on its own is not a meaningful measure. For example,

Funk95algorithmsonly contains 3 and 4 citations for the ResearchIndex and direct citation

counts. However, by virtue of the fact that the paper was published in 1995 it has a count

of 29 citations under closure.

It is also interesting to note that althoughFischer98specificationappears to have

been ignored within the set of survey papers it has been cited 10 times by papers in

the ResearchIndex database. Conversely, the case also arises where there are direct

citations within the survey collection but none recorded by ResearchIndex. For example,

61



ResearchIndex Direct Closure
Paper Citations Citations Citations

Lindig97assessing 29 21 28
Krone94inference 27 16 33
Siff97identifying 27 17 26
Snelting98reengineering 24 17 20
Snelting99reengineering 24 3 8
Godin93building 23 10 30
Snelting96reengineering 20 15 30
vanDeursen98identifying 17 6 7
Snelting98concept 16 8 21
Lindig95concept 12 3 31
Ball99concept 11 3 8
Fischer98specification 10 0 0
Sahraoui97applying 8 5 26
Snelting00software 5 2 5
Godin95applying 4 2 27
Godin98design 4 5 15
Canfora99case 3 3 3
Funk95algorithms 3 4 29
Kuipers00types 3 3 3
Eisenbarth01aiding 2 0 0
Tonella99object 2 1 1
Eisenbarth01feature 1 0 0
Huchard99from 1 0 0
Richards02controlled 1 0 0
Snelting00understanding 1 1 1
Ammons03debugging 0 0 0
Andelfinger97diskursive 0 0 0
Arevalo03understanding-a 0 0 0
Arevalo03understanding-b 0 0 0
Boettger01reconciling 0 3 3
Bojic00reverse 0 0 0
Dekel02applications 0 1 1
Duwel00bridging 0 1 1
Duwel98identifying 0 1 2
Duwel99enhancing 0 0 0
Eisenbarth03locating 0 0 0
Huchard02when 0 0 0
Leblanc99environment 0 0 0
Richards02assisting 0 0 0
Richards02recocase 0 0 0
Richards02representing 0 0 0
Richards02using 0 0 0
Schupp02right 0 0 0
Streckenbach99understanding 0 0 0
Tilley03software 0 0 0
Tilley03towards 0 0 0
Tonella01concept 0 0 0

Table 2.5: For each of the survey papers this table shows the number of
citations reported by ResearchIndex, the number of direct citations within the
set of papers and the total number of citations after computing the citation
closure.
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Boettger01reconcilingcontains 3 direct citations but none within ResearchIndex. There are

a number of possible explanations for these values. First, ResearchIndex relies on search

engine queries to locate papers and the paper or papers that cite it may not be visible. This

is one of the limitations of autonomous citation indexing — not all papers are available on-

line and some may be hidden behind services that require a subscription for full-text access.

Alternatively, it could also be the case that the paper is in the ResearchIndex database but

the referencing papers are not, or they may be ignored because they are self citations.

As might be expected, for the 10 most highly cited papers according to ResearchIndex

there is a reasonable correspondence with the ordering based on direct citations. However,

a major difference appears in the values forSnelting99reengineering. While this appears

to be a case where ResearchIndex has confused the papersSnelting98reengineeringand

Snelting99reengineeringthis is also a common occurrence within the literature. A

number of preliminary and expanded versions of Snelting and Tip’s “Reengineering

Class Hierarchies Using Concept Analysis” paper have been published and there is

some inconsistency in terms not only of citation details but also for the year of

publication. Ignoring this inconsistency, it can be seen that 6 of the top 10 most

highly cited papers are either authored or co-authored by Snelting. These 6 papers:

Lindig97assessing, Krone94inference, Snelting98reengineering, Snelting99reengineering,

Snelting96reengineering, andSnelting98conceptall appear along the main “trunk” of the

closure diagram in Figure 2.8.

While the citation closure lattice provides a useful view of the survey literature, a

citation count based on closure is meaningless. Alternatively, there may be other measures

based on chain length or the number of papers in the extent that may also provide some

insight into a paper’s impact.

The ResearchIndex digital library represents an obvious path to automate the

construction of a citation context, however, there are two immediate impediments. First,

initial experiments indicate that the HTML returned by ResearchIndex queries does not

validate using standard HTML tools so a custom parser would be required. While this is

only a minor technical challenge the second impediment is ResearchIndex’s “no robots”
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policy which an automated approach may violate [145].

2.8 Conclusion

This chapter has presented a literature survey of 47 academic papers reporting software

engineering applications for FCA. The first half of the chapter provided an overview of

the papers using what are essentially conceptual scales based on ISO12207 categorisation,

target application language and target application size.

The majority of the reported work has been in the areas of detailed design and

software maintenance where FCA has been applied to object-oriented re-engineering and

class identification tasks. While these late-phase approaches could be seen as obvious

applications because of the specialisation/generalisation relationship between the concepts

in a concept lattice, the range of different formal objects and attributes used is surprising.

These range from documentation, use-cases and compiled code through to execution

traces. Other novel applications have included support for test-coverage analysis. While a

number of papers describe some early-phase approaches there are still a number of as yet

untouched application areas includingacceptance support, integration, coding, installation

andqualification testing.

The second half of the chapter introduced two further analyses of the literature which

provided an insight into authorship groups, citation patterns and the impact of papers

within the collection of survey papers. Eight main research groups are identified among

the authors and of particular note is the impact of Snelting’s work. This is most clearly

seen in the application language, author collaboration and citation closure diagrams.

While the attributes analysed in the early sections of the paper were specific to software

engineering the collaboration and citation diagrams relied on attributes which are common

to all academic literature. Although unpublished, a web-page by Kalfoglou [113] reports

similar work to classify journal papers using two different classification schemes as well as

an example exploring the changing membership of a conference programme committee.

Having demonstrated that the majority of applications support late-phase activities —

and more specifically software maintenance — the remainder of the thesis explores FCA

64



applications to early-phase activities and in particular applications to formal specification.

The next chapter presents a case study applying Düwel’s approach for identifying class

hierarchies for a system specified using the Object-Z formal specification language.
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Chapter 3

Class Hierarchy Identification from Use-case
Descriptions

As discussed in Chapter 2, one of the existing application areas for FCA in software

engineering is the identification and maintenance of class hierarchies for both new

and legacy applications. This chapter describes an exercise in object-oriented software

modelling where FCA is applied to a formal specification case study using Object-Z. In

particular, the informal description from the case study is treated as a set of use-cases

from which candidate classes and objects are derived. The resulting class structure is

contrasted with the existing Object-Z design and the two approaches are discussed. The

work presented in this chapter has been published in a paper co-authored with Wolfgang

Hesse and Roger Duke [201]. Hesse provided the methodology, instruction, and insight

into the approach while Duke provided the example case study and editorial assistance.

3.1 Motivation

The aim of this work was to perform a comparison between a class hierarchy derived via

the application of FCA and an existing class diagram produced as part of an Object-Z case

study [52]—in particular applying FCA in connection with use-case analysis to discover

class candidates [59]. Moreover, the FCA class decomposition was performed sight unseen,

that is, only the use-cases were presented to the class designers — they did not have access

to an existing class diagram for the system being modelled. The informal description of
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the system was considered as a use-case source and five use-cases were identified. With

respect to the process a number of questions were asked:

• What are the differences between the two class hierarchies and are there valid reasons

for the differences?

• What support does FCA offer the class designer and to what extent is it, or can it be

automated?

• How does the FCA approach influence the quality of the resulting class structure?

• Is FCA a useful mechanism for constructing Object-Z classes?

Currently, the “Object-Z engineer” works in a bottom-up manner, using mainly

inheritance and association to create the system. The process is largely based on native

experience, and a great deal of Object-Z “training” tries to cultivate this experience. Can

FCA help by providing a method that relies less on training and previously acquired

knowledge but results in an identical or at least a similar class structure?

The FCA-based methodology for identifying class candidates from a use-case-like

problem description is based on the systems analysis work of Düwel and Hesse [59, 57].

Informally the approach can be described as follows:

• (Re-)Structure the problem description and formulate use-cases.

• Mark all relevant “things” occurring in the use-case descriptions.

• Build a formal contextby taking the marked “things” asobjectsand the use-cases as

attributes.

• Generate the formal concept lattice for discussion. Check the concept nodes of the

resulting lattice for suitable class candidates.

• Discuss, rework and modify the use-case descriptions and the attribute associations

of objects.

• Iterate the preceding steps until a satisfactory class structure has evolved.

The next section introduces this approach in more detail using a mass transit railway

ticketing system as an example. Section 3.3 describes the progress from the initial informal

description to the final concept lattice representing a possible class structure for the example

case. Section 3.4 compares the results of the two approaches.
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3.2 From an informal description to a first concept lattice

An informal description taken from a case study modelling a mass transit railway ticketing

system in Object-Z was used as the starting point for the exercise [52]. The main purpose

of the case study was to capture the functionality of the different ticket types. The

functionality was specified as perceived by an observer of the railway system. The informal

description of the system by Duke and Rose [52] reads as follows:

• The mass transit railway network consists of a set of stations. For

simplicity, it will be assumed this set is fixed, i.e. stations are neither

added to nor removed from the network.

• The fare for a trip depends only upon the stations where the passenger

joins and leaves the network, i.e. the actual route taken by the passenger

when in the network is irrelevant. The fare structure can beupdated from

time to time.

• Three types of tickets can bepurchased:

Single-trip tickets permit only a single trip, and only on the day the

ticket is purchased. The ticket has a value in the range $1 to $10,

and the passenger is permitted to leave the network if and only if the

fare for the trip just completed does not exceed the ticket’s value.

Multi-trip tickets are valid for any number of trips provided the current

value of the ticket remains greater than zero. A ticket’s initial value

is either $50 or $100. Each time the passenger leaves the network the

value of the ticket is reduced by the fare for the trip just completed.

If this fare exceeds the value remaining on the ticket, the passenger

is still permitted to leave the network and the value of the ticket is

set to zero. A multi-trip ticket expires after two years even if it has

some remaining value.

Season ticketsare valid for either a week, a month, or a year. Within

that period no restrictions whatsoever are placed upon the trips that
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can be undertaken.

• As tickets are expensive to produce, they can bereissued, i.e. tickets

can have their expiry date and value reset. (The type of ticket cannot

be changed.) Although tickets are issued to passengers, the essential

interaction is between tickets and stations; thus passengers are not

modelled.
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type of ticket × ×

expiry date ×

value × × ×

fare struct ×

station ×

fare × ×

network × × ×

passenger × × ×

ticket × × × ×

trip × × × ×

day ×

single trip ×

initial value ×

multi-trip ×

number ×

value remaining ×

month ×

period ×

week ×

year × ×

Table 3.1: First formal context created from the five use-cases. The
corresponding concept lattice is shown in Figure 3.1.

From the informal description five use-cases were identified:update fare structure, buy

single ticket, buy multi-trip ticket, buy season ticket, andreissue ticket. In the first step, the

text was cut into five pieces according to bold keywords representing the five “use-cases”.

All nouns showing a certain relevance were considered as “things” or objects in the FCA

sense. The choice of the nouns was deliberately done in a syntactical, “quasi-automated”

way, that is, without further semantic considerations as to whether this choice makes much

sense. A formal context was constructed using the identified nouns as the set of objects
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Figure 3.1: Concept lattice of the formal context abstracted from the cross
table in Table 3.1.

and the use-cases as the attributes1. The result appears in Table 3.1. Here an ‘×’ at the

intersection of a use-case column and a noun row indicates that the noun was identified in

this use-case description. The corresponding formal concept lattice is shown in Figure 3.1.

A first correction concerns the cut of the text into use-cases where the headline

introducing the three types of tickets was mistaken as a part of theupdate fare structureuse-

case. In fact, the nountype of ticketis not addressed inupdate fare structurebut it is part of

the introductory headline and thus applies to the following three use-cases describing the

purchase of the three ticket types.

The initial changes between the context in Table 3.1 and Table 3.2 result fromtype of

ticketbeing removed from theupdate fare structureuse-case and added to the three “buy”

1To avoid confusion with the standard FCA terminology introduced in Chapter 1 the term “item”, when
referring to nouns, will be used throughout the chapter instead of “object”.

70



re
is

su
e

tic
ke

t
up

da
te

fa
re

st
ru

ct
ur

e

bu
y

si
ng

le

bu
y

m
ul

ti

bu
y

se
as

on

type of ticket × × × ×

expiry date ×

value × × ×

fare struct ×

station ×

fare × ×

network × × ×

passenger × × ×

ticket × × × ×

trip × × × ×

day ×

single trip ×

initial value ×

multi-trip ×

number ×

value remaining ×

month ×

period ×

week ×

year × ×

time × ×

Table 3.2: Changes to the formal context from Table 3.1 are shown in grey. A
newtimeobject has been added andtype of ticketadjusted. The corresponding
concept lattice is shown in Figure 3.2.

use-cases:buy single, buy multiandbuy season. The differences between the two contexts

are shown in grey. Furthermore the itemtime was overlooked during construction of the

first context and has been included here in both theupdate fare structureandbuy season

use-cases. Time is explicitly mentioned inupdate fare structurebut not inbuy season ticket.

However, based on the implicit assumption in the wording of “Within that period . . . ” the

text can be extended to “Within that period oftime. . . ”.

3.3 Iterating the FCA steps

The initial steps of identifying objects and attributes within the informal description and

the initial corrections to the incidence relation resulted in the formal context in Table 3.2

and the line diagram in Figure 3.2. A first analysis of the lattice shows the use-case↔ noun
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Figure 3.2: Concept lattice of the formal context abstracted from the cross
table in Table 3.2. Observe thattimehas been introduced andtype of ticketnow
also applies to the three ticket buying use-cases.

dependencies as far as they can be derived from the pure syntactic formulation of the use-

cases:

1. If a node marked by a use-case label is selected then all the relevant nouns contained

in the use-case can be found among the successor nodes.

2. If a node marked by a noun label is selected then all the use-cases containing the

noun can be found among the predecessor nodes.

An immediate consequence is that the higher things occur in the lattice diagram then

the more specialised they are—i.e. the lower-most things are used in more use-cases and

are therefore the most general ones. A dual argument would also apply to the use-cases

if these formed a hierarchy, however, in this example there is no use-case which appears

above or below another use-case in the concept lattice.
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type of ticket × × × ×

expiry date ×

value × × ×

fare struct ×

station ×

fare × ×

network × × × ×

passenger × × × ×

ticket × × × ×

trip × × × ×

day ×

single trip ×

initial value ×

multi-trip ×

number ×

value remaining ×

month ×

period ×

week ×

year × ×

time × ×

Table 3.3: Changes to the formal context from Table 3.2 are shown in grey.
The buy seasonuse-case has been adjusted and the corresponding concept
lattice is shown in Figure 3.3.

The idea that things which appear higher in the diagram are more specialised appears

to be counter-intuitive but results from the choice of nouns as objects and use-cases as

attributes in the construction of the formal context. While it is possible to transpose the

objects and attributes in FCA this choice was deliberate because the resulting diagram

resembles the typical layer structure of many software architecture diagrams. The upper

layers represent functional components while the lower ones represent common services

often associated with data clusters. Considering the diagram from the supremum down

represents system functionality and use-case refinement for larger examples. Considering

the diagram from the infimum up corresponds to the data view where each upward step

represents a refinement in the explanation of the data [94].

Further refinement of the structure now calls upon the “contextual knowledge” of the

modeller/reviewer. From this point of view a first “semantic” analysis of the lattice can be
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Figure 3.3: Concept lattice of the formal context abstracted from the cross
table in Table 3.3. Note thatpassengerandnetworknow also apply to thebuy
seasonuse-case.

conducted. Firstly, from Figure 3.2 it can be seen thatpassengerandnetworkappear to be

too high in the diagram. These items apply to theupdate fare structure, buy singleandbuy

multi use-cases but not tobuy season. Given the obvious importance of both passengers

and the railway network to a railway ticketing system these two items are less general than

expected by the modellers. This inspires a review of thebuy seasonuse-case; although not

mentioned in the corresponding use-case description, a season ticket implicitly involves

both apassengerand the mass transitnetwork. A more explicit version of the use-case

description would read:

Season ticketsare validon the whole networkfor either a week, a month, or

a year. Within that period no restrictions whatsoever are placed upon the

trips that can be undertakenby the passenger.
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type of ticket × × × ×

expiry date ×

value × × ×

fare struct ×

station ×

fare × ×

network × × × ×

passenger × × × ×

ticket × × × ×

trip × × × ×

day ×

single trip ×

initial value ×

multi-trip ×

number ×

value remaining ×

month ×

period ×

week ×

year × ×

time × × × ×

Table 3.4: Changes to the formal context from Table 3.3 are shown in grey.
The implicit time references have been added and the corresponding concept
lattice is shown in Figure 3.4.

This modification is reflected in Table 3.3 and the corresponding lattice in Figure 3.3.

The context in Table 3.4 represents the recognition that the itemsdayandyear in buy

single and buy multi respectively also implytime. Coincidentally, this also corrects an

earlier mistake where the modellers had actually missed a reference totimein thebuy multi

use-case. The resulting concept lattice is depicted in Figure 3.4 and at this point in the

exercise the modellers were shown the existing class diagram of the system for the first

time. An initial informal comparison was made and these observations are presented in

Section 3.4 of the paper.

Looking at Figure 3.4 it can be observed that while the itemtimehas now moved into

a lower and therefore more general position,fare still appears too high in the diagram. It

is reasonable to assume that fares may also apply to some or all of the other ticket types,
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Figure 3.4: Concept lattice of the formal context abstracted from the cross
table in Table 3.4. Note thattimenow applies to all three of the ticket buying
use-cases.

however, in the diagramfare only applies to theupdate fare structureandbuy singleuse-

cases. This leads to the identification and correction of another mistake from the initial

noun analysis of the use-cases; the itemfare is mentioned in thebuy multiuse-case but was

missed by the class modellers during the creation of the earlier contexts. The appropriate

inclusion is reflected in Table 3.5. A text mining approach using a dictionary of terms or

an ontology relevant to the domain being modelled may facilitate the automated extraction

of nouns from use-cases and prevent these kinds of errors.

Furthermore, considering thestationitem, the calculation of afare implies knowledge

of the stations by which a passenger enters and exits the mass transit railway network. Both

thebuy singleandbuy multiuse-cases include thefare item so in Table 3.5 thestationitem

has been included for these use-cases as well. The concept lattice resulting from these
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type of ticket × × × ×

expiry date ×

value × × ×

fare struct ×

station × × ×

fare × × ×

network × × × ×

passenger × × × ×

ticket × × × ×

trip × × × ×

day ×

single trip ×

initial value ×

multi-trip ×

number ×

value remaining ×

month ×

period ×

week ×

year × ×

time × × × ×

Table 3.5: Changes to the formal context from Table 3.4 are shown in grey.
The missedfare and implicit station information has been corrected. The
corresponding concept lattice is shown in Figure 3.5.

“semantic implications” is depicted in Figure 3.5.

3.4 Comparing the two approaches

The aim of this modelling exercise was to perform a comparison between a class hierarchy

derived via the application of FCA and an existing class diagram produced as part of an

Object-Z case study. Having derived the lattice depicted in Figure 3.4 the modellers were

shown the existing class diagram for the first time. One further refinement was made

resulting in Figure 3.5. This section compares and contrasts the “final” lattice with the

existing class diagram shown in Figure 3.6.

An examination of the up-set for the unlabelled node below the “year” item in Figure 3.5

reveals the apparent similarity between the line and class diagrams. In Figure 3.7 this order

filter and the corresponding order ideal are shown in bold. The nodes labelledbuy single,
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Figure 3.5: Concept lattice of the formal context abstracted from the cross
table in Table 3.5. Note thatfare andstationnow apply to both thebuy single
andbuy multiuse-cases.

buy multi, andbuy seasonin Figure 3.7 represent the class candidates corresponding to the

classesSingleTripTicket, MultiTripTicket, andSeasonTicketin Figure 3.6. Similarly, the

nodes labelled “TripTicket” and “Ticket” in Figure 3.7 correspond with theTripTicketand

Ticket class unions. In this case, the structure shown in bold represents “ticket buying”

functionality. An alternative interpretation that considers the re-issuing of tickets would

move the corresponding “Ticket” label down to the node containing thetype of ticketand

ticket items.

An obvious difference between the two structures is the presence of attributes and

possible methods (e.g.update fare structure) in the line diagram as compared with Object-

Z functions in the class diagram. However, the relationship between the two structures

can still be inferred by checking if the attributes required for a particular function are in
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TripTicket

Ticket

ticketsstations database

clock

1

1

* *

BaseTicket
reIssue
enterStation
exitStation

Station

supplyId

MultiTripTicket

reIssue
exitStation

SingleTripTicket
reIssue
exitStation

SeasonTicket

reIssue

FareDataBase
updateFare
stats
statsFare

Clock

supplyDate
newDay

U

U

MassTransitRailway
reIssueTicket
startTrip
tripTicketFinishTrip
seasonTicketFinishTrip
updateFare
newDay

Figure 3.6: Object-Z class diagram for the mass transit railway system. This
diagram appears as Figure 9.8 in the original case study [52].

the “correct” place. For example, the Object-Z representation makes use ofEnterStation

andExitStationfunctions so that the appropriate fare can be calculated and checked for

SingleTrip and MultiTrip tickets. The action of entering and exiting stations is assumed

domain knowledge and is therefore not present in the use-cases. While the actions

themselves do not appear in the line diagram the lattice mirrors the required structure

because thestation, fare, andvalueattributes are only available to these ticket types. This

information is not required for a SeasonTicket.

Other differences between the two structures include the absence of obviousStation,

Clock and FareDataBaseclasses in Figure 3.5. In addition, there are no references to

statistics in the original use-cases and a comparison shows that thestatsand statsFare
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“TripTicket”

6

“Ticket” -

Figure 3.7: The Formal Concept lattice from Figure 3.5 with the ticket
class hierarchy shown in bold. The nodes labelled “TripTicket” and
“Ticket” correspond respectively with theTripTicket and Ticket class unions
in Figure 3.6.

functions in Figure 3.6 are therefore quite artificial. These differences are largely due

to functional artefacts or abstractions required for the Object-Z specification of the mass

transit railway. As Duke and Rose state:

The main purpose of this case study is to capture the functionality of the

different ticket types. The approach taken is to specify ticket functionality

from the point of view of the passenger, i.e. as perceived by an observer of the

railway system. In order to do this, however, it is necessary to conceptualise

and abstract various other objects in the system, such as the stations, a database

to record the fare structure, and a clock to keep track of the days [52].

A further important question concerns the modularisation of the system, that is, its
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Figure 3.8: Initial package structure based on Figure 3.4.

decomposition into smaller units typically calledcomponents, packagesor modules. Lindig

and Snelting have shown that FCA can support this decomposition by forming so-called

block relations[132]. Block relations result from filling up a formal context table with

additional marks (not contained in the original context) in order to coarsen the lattice

structure and obtain more compact concepts. In this case, the attempt to find an appropriate

decomposition for the lattice of Figure 3.4 resulted in the initial package structure depicted

in Figure 3.8. Three possible packages deal with the purchase of (various kinds of) tickets;

the fare structure and its updates; and the re-issuing of tickets.
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3.5 Object Exploration

While there are obvious similarities between the resulting line diagram and the original

class diagram for this particular example, the approach described here has limitations.

Firstly, how does a modeller know when to stop iterating? Statements like “in the correct

position” still infer a reliance on the intuition, native experience and training of the

modeller. A second question posed at the start of the chapter was “What support does

FCA offer the class designer and to what extent is it, or can it be automated?”. The current

iterative process relies on the development stakeholders agreeing that no more changes are

necessary. While the domain knowledge of the stakeholders will always be required to

“verify” that the lattice makes sense there is a way to formalise the checking process that

also exploits this background knowledge.

In the example presented here iterations during the analysis result from questions about

the “correct” position of objects and attributes in the line diagram. As a consequence of

discussion between the modellers and system stakeholders the formal context is modified

and the new line diagram examined. This could be seen as anad hocand informal form

of object exploration which was introduced in Section 1.5.7. In the existing approach

a perceived contradiction in the lattice results in a context update and another iteration

of the process. An alternative would be to formally apply object exploration. Rather

than relying on an inconsistency in the lattice being “noticed” the formalised process

would instead presents a series of implications to the system stakeholders for discussion.

Iterations can then stop when all the valid implications in the context have been explored.

An obvious limitation of this approach, however, is the issue of scalability. The number

of implications that need to be considered and discussed during object exploration may

become unmanageable for even medium-size examples.

3.6 Conclusion

This chapter has presented a modelling exercise to identify class candidates using use-case

analysis and FCA. An iterative correction process resulted in a final line diagram which

82



was then contrasted against a known existing structure. A small, well understood example

was chosen and a comparison of the resulting structures demonstrates that they are quite

similar. Obvious differences between the two structures rely on information that is not made

explicit in the use-cases or they represent artificial constructions related to the specification

in Object-Z.

Although it may be possible to automate the initial noun identification within use-cases,

later refinements rely on the insight and judgement of those involved in the modelling

process. This includes modellers, domain experts and other system stakeholders. The

process can be further mechanised by applying object exploration.

The value of this approach then is in the process itself—the construction and discussion

of the line diagrams, and in the kinds of questions it forces the designer to ask about the

domain structure. The process and resulting diagrams also promote discussion as modellers

consider and question the position of attributes in the line diagram and try to adjust

the formal context accordingly. This is also consistent with the experiences reported by

Andelfinger [6] where FCA was used to facilitate discussions during requirements analysis.

In this chapter FCA was used to support the derivation of an alternative class structure

to the existing Object-Z hierarchy. Chapter 4 explores the application of FCA to the

specifications themselves as a mechanism for visualising the structure and properties of

formal specifications.
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Chapter 4

Formal Specification Navigation and
Visualisation

This Chapter introduces an approach for navigating and visualising Z specifications using

FCA. The approach takes a source specification written in LATEX and produces a formal

context representing the static structure of the specification. A number of line diagrams

can then be produced which allow a user to investigate and explore various properties

of the specification. The line diagram does not replace, but is intended to be used in

conjunction with, the original Z specification. Abstraction through conceptual scaling,

nesting, zooming and folding line diagrams allows users to retain context while navigating

large specifications and an example based on theBirthdayBookspecification is presented.

A summary of this work has been published inTilley03survey[200] and a more detailed

version inTilley03towards[199].

Section 4.1 discusses existing approaches to visualising Z and related languages. These

approaches typically focus on mappings to UML or the integration of UML-like graphical

notations with Z. Section 4.2 describes an approach to creating formal contexts from

Z specifications and theBirthdayBookspecification is used as an illustrative example.

The abstractions afforded by FCA are introduced in Section 4.3. The application of the

abstractions to visualising and navigating Z specifications is presented throughout the

remainder of the chapter.
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4.1 Visualising Z Specifications

In an attempt to dispel the myths that “formal methods require highly trained mathematics”

and that “formal methods are unacceptable to users” [91] there have been a number

of approaches to provide alternative visual representations of specifications for Z-like

languages. Typically, these representations have both textual and graphical components

within their notation. Object-Z, for example, incorporates a number of UML-like graphical

elements. One of the commonly stated reasons for the poor adoption of formal methods

is that they are difficult to use and understand. These graphical notations typically aim

to provide an abstraction over the mathematics to make the formal notations easier to

understand.

UML [22] has become the de-facto industry language for modelling systems. While it

provides a means of system specification it does not have the mathematical rigor of formal

methods. However, UML enjoys a popularity that formal methods do not and its graphical

nature makes it an obvious choice as an alternative representation language. UML is also

implementation oriented which may be helpful to the ultimate implementers of a particular

model, however, this is ultimately inconsistent with the aims of a conceptual modelling

language [107].

There have been a number of approaches used to introduce graphical representations

of Z specifications via UML. The work of Sun, Dong, Liu and Wang [195] provides

an XML [219] representation for the Z family of languages called ZML. ZML can be

transformed into UML and the mark-up is discussed further in Section 5.1.3. Many

of the approaches focus on the structural aspects of the specification [224]. Kim and

Carrington [117] argue that beyond the static structure of the specification the dynamic

nature and complex constraints must also be visualised for a full understanding of a

specification. To accomplish this they introduce two other graphical representations in

addition to UML — one for the complex constraints and another for the operation schemas.

UML is an object-oriented notation and while Kim and Carrington’s approach focuses

on Z the use of UML as a graphical notation for formal specification typically focuses

on application to Object-Z. Other work by Kim and Carrington [114, 115], Evans and
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Clark [67], and Miao, Liu and Li [136] also combines Z and UML, however, rather than

visualising Z specifications via UML these approaches focus on providing a formal basis

for various aspects of UML in Z.

“Alloy” is a Z-related, lightweight formal method with both textual and graphical

components that offers a straightforward mapping from UML into a formal notation [106,

105, 107]. Lightweight formal methods are “lightweight” in that they offer “less than

completely formal” or partial approaches to specification, validation and testing [2, 106].

Typically they trade off completeness or language functionality for efficiency. Alloy is

discussed further in Section 5.1.2.

With regard to the graphical elements in Object-Z, Duke and Rose [52] note that

graphical notations are useful for presenting material to educate users and to facilitate

communication between stakeholders in the development of a system. However, graphical

notation should be seen as a complement to the specification. They also point out that

graphical notations are descriptive and semi-formal at best. They are not appropriate for

formal procedures which are conducted using mathematics. This view is consistent with

the use of FCA to visualise Z specifications. The aim is not to provide an alternative

to the specifications themselves but rather a representation that can be used alongside, to

help navigate and provide insight into, the original specification. The first step towards

the visualisation of a Z specification via FCA is to create a formal context from the

specification.

4.2 From a Specification to a Formal Context

Given the mathematical nature of the Z notation, specifications are typically written in

LATEX mark-up which is then translated into a rendered form such as PostScript or PDF. Z

representation issues and a number of alternative notations are discussed in Section 5.1. By

considering the schemas as a set of objects and the mark-up elements of the specification

“source” as attributes it is possible to create a formal context from which line diagrams can

be constructed. An example context generated from theBirthdayBookspecification in Oz

style LATEX [118] is presented in Table 4.1.
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BirthdayBook × × × × × × × × × ×

InitBirthdayBook × × × × ×

AddBirthday × × × × × × × × × × × × × × × × ×

FindBirthday × × × × × × × × × × × × × ×

Remind × × × × × × × × × × × × × × × × × ×

Success × × × × × ×

AlreadyKnown × × × × × × × × × × × ×

NotKnown × × × × × × × × × × × ×

RAddBirthday × × × × × × × × × × × × × × × × × × × × × × × × × ×

RFindBirthday × × × × × × × × × × × × × × × × × × × × ×

RRemind × × × × × × × × × × × × × × × × × × × × × ×

Table 4.1: Formal context for theBirthdayBookspecification.

\begin{schema}{Success}

result! : REPORT

\ST

result! = ok

\end{schema}

Figure 4.1: LATEX mark-up for theSuccessschema in Oz style.

For example the Success schema shown in Figure 4.1 contains the mark-up elements:,

\ST, =, result!, REPORT, andok (ignoring the common opening and closing schema tags).

This corresponds with theSuccessrow in the context shown in Table 4.1. Note that simple

elements like ‘:’ have also been included to produce the “richest” or most detailed context

so that as much of the original specification as possible is captured. Various abstraction

techniques are available to ultimately hide details that are not relevant to the current interest

of the viewer. These techniques are discussed in Section 4.3.

While information hiding abstractions like the schema calculus and the ‘Ξ’ and ‘∆’

conventions facilitate the usability of Z they also complicate the context creation process.

For example, consider theRFindBirthdayschema:

RFindBirthdaŷ= (FindBirthday∧ Success) ∨ NotKnown

A simple parser would include theFindBirthday, SuccessandNotKnownschema names as

attributes in the context but not the content contained in their expansions.
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FindBirthday × × × × × × × × × × × × × ×

Success × × × × × ×

NotKnown × × × × × × × × × × × ×

RFindBirthday × × × × × × × × × × × × × × × × × × × × ×

Table 4.2: Sub-context of Table 4.1 highlighting composition in
RFindBirthday.

While the resulting context would be suitable for visualising relationships between

schemas it could not, for example, provide an accurate view of type usage in

RFindBirthday. Again the aim is to provide as much detail as possible during the generation

of the context.

An obvious solution to this problem is to mandate expanded versions of specification

for context creation. The context in Table 4.1 was produced from a source specification that

included expanded versions of theRAddBirthday, RFindBirthdayandRRemindschemas.

This expansion could be performed by the specification writers or automated using

tools. The ZML mark-up, for example, can render expanded schemas automatically from

horizontal schema specifications.

An alternative solution is to perform automated expansion using information contained

in the context itself. Given that names must be declared and defined before they are used in

Z then the existing explicit declarations of the schemas can be used to infer the expansion.

Provided that parsing for context creation proceeds in a linear manner through the file then

the corresponding row for any named schema is already defined. If the rows of the context

are considered to be bit vectors then expansions can be included by taking the logical

“OR” of the current schema row along with the rows of any named schemas within it. For

example, consider theRFindBirthdayschema and a sub-context of Table 4.1 containing

only the named schemas. The sub-context appears in Table 4.2.

Observe that the result represents the logical OR of the composed schemas plus the

schema conjunction and disjunction operators (\land and\lor). Again, note that this
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AddBirthday × × × × × × × × × × × × × × × × ×

Success × × × × × ×

AlreadyKnown × × × × × × × × × × × ×

RAddBirthday × × × × × × × × × × × × × × × × × × × × × × × × × × ×

Table 4.3: Sub-context of Table 4.1 highlighting composition in
RAddBirthday. The invalid “bit” is shown in grey.

context was produced from an already expanded version of the specification so the schema

definition operator (\sdef) and the referenced schema names have not been included in

the context. However, if the same technique is applied to theRAddBirthdayschema:

RAddBirthdaŷ= (AddBirthday∧ Success) ∨ AlreadyKnown

the result includes an extra invalid “bit”, shown in grey in Table 4.3. The bit is invalid

because the∆ and Ξ operations are mutually exclusive — a schema operation either

changes or preserves the value of state variables. These attributes should therefore be

excluded from the expansion process. In keeping with the view of the object rows as

bit vectors this exclusion could be performed using a logical “AND” operation and an

appropriate bit-mask. If there are any∆ operations among the schemas named in a

horizontal schema then the result must also be a state-changing schema.

As expected, the resulting addition also includes the schema conjunction and

disjunction operators and precedence ordering brackets in theRFindBirthdayrow. Having

created a formal context from a specification it is now possible to produce a concept lattice.

4.3 Abstraction in FCA

While it is possible to render the line diagram of the concept lattice corresponding to the

entire context the result is often overwhelmingly complex and of little value. There are,

however, notable exceptions. Snelting [177] describes a project to modularise a 20 year old

aerodynamics system written in FORTRAN that was used for aeroplane development. The
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Figure 4.2: Module structure of an aerodynamics system written in
FORTRAN. Despite the complexity of the diagram the concept lattice
was still useful as a quality metric. This image appears as Figure 3 in
Snelting00software[177].

106KLOC source resulted in a lattice with more than 2,249 concepts which is shown in

Figure 4.2. Despite the unreadability of the diagram the concept lattice was still useful as a

quality metric. The lattice was not horizontally decomposable and on the basis of this result

the remodularisation project was cancelled and a new system developed from scratch.

The assumption that the whole context will be rendered as a single line diagram is a

common source of naive criticism about the scalability of FCA. Rather than rendering the

entire context as a single lattice a number of abstraction mechanisms are typically used.

One approach to reduce the visual complexity of line diagrams is to create a line diagram

of a sub-context containing only the attributes of interest. This is the simplest form of

conceptual scaling. Other abstraction mechanisms include: introducing a number of many-

valued contexts (an elaboration on conceptual scaling), nested line diagrams, zooming,

and folding [42]. These mechanisms facilitate the ten tasks of conceptual knowledge
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processing identified by Wille [227]:exploring, searching, recognising, identifying,

analysing, investigating, deciding, improving, restructuringandmemorising. Where:

• Exploring shall mean looking for something of which one has only a

vague idea.

• Searchingshall be understood as looking for something which one can

more or less specify but not localise.

• Recognising is understood with the meaning of perceiving clearly

circumstances and relationships.

• Identifying shall mean determining the taxonomic position of an object

within a given classification.

• Analysing in the scope of conceptual knowledge processing is

understood as examining data in their relationships while guided by

theoretical views and declared purposes.

• Investigating means to study by close examination and systematic

inquiry.

• Decidingshall mean resolving a situation of uncertainty by an order.

• Improving has the meaning of enhancement in quality and value.

• Restructuring means to reshape a given structure, which, within the

scope of our discussion is conceptual in nature.

• Memorising is understood as a process of committing and reproducing

what has been learned and retained.

The application of these methods to formal specifications is demonstrated in the

following sections.

4.3.1 Scaling

Conceptual scaling was introduced in Section 1.5.4 and in its simplest form a sub-context

can be considered as a conceptual scale. This abstraction focuses the user’s attention on the

objects and attributes of interest by rendering a line diagram containing only the relevant
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BirthdayBook × ×

InitBirthdayBook
AddBirthday × ×

FindBirthday × ×

Remind × ×

Success ×

AlreadyKnown × ×

NotKnown × ×

RAddBirthday × × ×

RFindBirthday × × ×

RRemind × × ×

Table 4.4: A sub-context considering the basic data-types from the
BirthdayBookspecification as attributes.

concepts. A scale represents a query that can be posed to reveal something about the

structure or nature of the specification. A scale can also be thought of as a view over the data

and this is the terminology used for scales in the Cernato FCA tool. Cernato is discussed

further in Section 5.2.5. In terms of the conceptual knowledge processing tasks defined

above conceptual scaling supportsexploring, searching, identifying, andmemorising.

Within existing FCA tools scales are normally created by a conceptual system engineer

in conjunction with a domain expert. The scales attempt to capture the knowledge of

domain experts so that it can be stored and applied by non-expert users. For example, in

an FCA-based information retrieval project for the Center of Interdisciplinary Technology

Research at TU-Darmstadt a conceptual knowledge system was designed that contained

over 150 scales [161].

A sub-context of Table 4.1 containing only the basic data-types in theBirthdayBook

specification is presented in Table 4.4. The corresponding line diagram in Figure 4.3

represents a scale showing data-type usage across the schemas in the specification.

It can be seen from Figure 4.3, for example, that the robust versions of theAddBirthday,

FindBirthdayandRemindfunctions all use theREPORTattribute. In terms of data-type

usage this is the only thing that distinguished them from their less-robust counterparts.

Scales can be defined on a per-project basis like the data-type scale described above or

they could be pre-defined based upon Z language constructs. For example, a sub-context
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Figure 4.3: Line diagram of the concept lattice corresponding to the context in
Table 4.4.

\
D

el
ta

\
X

i

BirthdayBook
InitBirthdayBook
AddBirthday ×

FindBirthday ×

Remind ×

Success
AlreadyKnown ×

NotKnown ×

RAddBirthday ×

RFindBirthday ×

RRemind ×

Table 4.5: Formal context considering∆ (\Delta) andΞ (\Xi) operation-types
from theBirthdayBookspecification as attributes.

based on the ‘∆’ and ‘Ξ’ conventions is shown in Table 4.5. Note that only a count of the

number of schemas in the object contingent is shown in Figure 4.4 rather than the actual

schema names. This can be useful when only an idea of the distribution of the objects is

required rather than a complete list of the objects at each concept. The two state schemas

and theInitBirthdayBookfunction appear at the top of the diagram. The two versions of

the AddBirthdayfunction appear under the concept labelled\Delta on the right and the

remaining six\Xi schemas on the left.

An alternative to creating scales during the construction of a conceptual knowledge
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Figure 4.4: Line diagram of the concept lattice corresponding to the context in
Table 4.5.

system is to generate scales on demand. Dynamically generated scales have been applied

in FCA-based email and document management systems [39, 38]. The process could be

semi-automated if the appropriate meta-data for the mark-up elements in the context was

available. For example, a type-usage scale could be automatically generated by selecting a

sub-context containing all the data-types. The ZML mark-up uses tag types to identify

elements, e.g.<type>DATE<\type> for the DATE data-type. If the initial context is

created from a ZML version of the specification then the tag-types can be stored as meta-

data and exploited for scale generation. Other scales could be based on input and output

variables, for example. Although the automatic layout of line diagrams is still a problem

within the FCA community, a simple order embedding within a larger, well known lattice

layout could be used to create usable, dynamically generated scales [41].

4.3.2 Visualising Schema Composition

A sub-context showing the attributes which are schemas is presented in Table 4.6. The

sub-context contains references to schemas from within the object schemas and therefore

represents schema composition. For example, the structure of theRAddBirthdayschema

can be seen in Figure 4.5. Traversing upwards through the lattice from the concept

with the object label “RAddBirthday” recovers the attributesAddBirthday, AlreadyKnown,

SuccessandBirthdayBook. This type of visualisation supports the conceptual knowledge

processing tasks ofrecognisingand identifyingwhere the relationships between schemas

can be clearly perceived.
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BirthdayBook
InitBirthdayBook ×

AddBirthday ×

FindBirthday ×

Remind ×

Success
AlreadyKnown ×

NotKnown ×

RAddBirthday × × × ×

RFindBirthday × × × ×

RRemind × × ×

Table 4.6: A sub-context representing schema composition within the
BirthdayBookspecification.

Figure 4.5: Line diagram based on Table 4.6 showing composition.
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BirthdayBook ×

InitBirthdayBook × ×

AddBirthday × ×

FindBirthday × ×

Remind × ×

Success ×

AlreadyKnown × ×

NotKnown × ×

RAddBirthday × × × × ×

RFindBirthday × × × × ×

RRemind × × × ×

Table 4.7: Formal context considering schema names as both objects and
attributes (G = M).

If the context in Table 4.6 is extended so thatG = M and the diagonal added such that

gIg,∀g ∈ G , then the resulting line diagram contains a concept for each schema. Table 4.7

represents this extension and the corresponding line diagram appears as Figure 4.6. From

this class-like view the structure of the robust schemas can again be clearly seen. The

structure ofRAddBirthdayis made explicit in Figure 4.7 which highlights the sets of nodes

both above and below theRAddBirthdaynode.

In Figure 4.7 the only unlabelled node in the diagram can be clearly seen belowSuccess.

This concept represents the fact thatBirthdayBookandSuccessschemas are only combined

in the robust functions.

4.3.3 Nested Line Diagrams

The power of conceptual data systems comes from the ability to combine pre-defined

scales together to produce new views over the data. The contexts of multiple scales can be

combined into a single context which can then be viewed as a line diagram or the scales can

be combined in a nested line diagram. This supports the conceptual knowledge processing

task ofanalysingwhere the chosen scales represent different theoretical views.

In some systems scales can be nested to arbitrary depth; however, beyond a single

level of nesting the diagrams typically become too small to be usable when rendered on
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Figure 4.6: Line diagram of the concept lattice corresponding to the context in
Table 4.7 showing composition relationships between schemas.

Figure 4.7: Line diagram from Figure 4.6 highlighting the ideal and filter for
the “RAddBirthday” concept.
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Figure 4.8: Nested line diagram showing the context from Table 4.4 nested
inside the context from Table 4.5.

a computer monitor. Figure 4.8 presents a nested line diagram where the context from

Table 4.4 is nested inside the context from Table 4.5. For comparison the reverse nesting is

presented in Figure 4.9 with the operation-type scale nested inside the data-type scale.

From the outer, rightmost concept in Figure 4.8 it can be seen that the only state

changing or ‘∆’ operations in theBirthdayBookspecification are the schemasAddBirthday

andRAddBirthday. While Spivey’s simple example is purely illustrative and a person’s

birthdate does not change over time there is typically a need in most systems for deletion

and update as well as insertion. The specification may therefore be incomplete.

This is an obvious omission and although omitted in the original specification

extensions are often included when the specification is presented as an example by other
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Figure 4.9: Nested line diagram showing the context from Table 4.5 nested
inside the context from Table 4.4.

authors. Table 4.8 presents a context showing the basic data-types and operation-types for

an extended version of theBirthdayBookspecification based on the work of Sun et al. [48].

The extensions include a schema to remove birthdays from the system and a schema to edit

existing birthday details. The complete specification appears in Appendix A. Figure 4.10

presents a nested line diagram of the extended specification for comparison with Figure 4.8.

The two scales represent basic data-type and operation-type sub-contexts from Table 4.8.

Schema Composition Revisited

The structure of the extended specification from a composition point of view is presented

in Tables 4.9 and 4.10 using the approach described earlier in Section 4.3.2. In the
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BirthdayBook × ×

InitBirthdayBook
AddBirthday × × ×

FindBirthday × × ×

Remind × × ×

Success ×

AlreadyKnown × × ×

NotKnown × × ×

RAddBirthday × × × ×

RFindBirthday × × × ×

RRemind × × × ×

RemoveBirthday × ×

ModifyBirthday × × ×

Table 4.8: Formal context containing the basic data-types and the∆ (\Delta)
andΞ (\Xi) operation-types from the extendedBirthdayBookspecification.

Figure 4.10: Nested Line diagram of the extendedBirthdayBookspecification.
The two scales are data-type and operation-type sub-contexts from Table 4.8.
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BirthdayBook
InitBirthdayBook ×

AddBirthday ×

FindBirthday ×

Remind ×

Success
AlreadyKnown ×

NotKnown ×

RAddBirthday × × × ×

RFindBirthday × × × ×

RRemind × × ×

RemoveBirthday ×

ModifyBirthday × × ×

Table 4.9: A sub-context representing schema composition within the
extendedBirthdayBookspecification. The corresponding line diagram appears
as Figure 4.11.

corresponding Figures 4.11 and 4.12 the implementation of theModifyBirthdayoperation

can be clearly seen.ModifyBirthday combines theRemoveBirthdayand AddBirthday

functions to first delete and then insert updated details into the system. The lack of robust

implementations based on theSuccessschema can also be observed for these two functions.

4.3.4 Zooming

Zooming is another abstraction technique that is also known asfiltering. In zooming a

subset of the object set is presented for display based on the extent of a concept of interest.

In conjunction with nested line diagrams zooming allows a detailed or “magnified” view of

a particular concept. A user can “drill down” into the concept and this close examination

is consistent with the conceptual knowledge processing tasks ofexploring, identifying, and

investigating.

Figure 4.13 presents the results of zooming theDateconcept in Figure 4.9. Note that

not only is the inner lattice displayed but also the objectsRFindBirthday, RRemindand

RAddBirthdayfrom the lower concept are shown as well. The relevant objects in Table 4.11

are shown in grey.
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Figure 4.11: Line diagram showing schema composition within the extended
version of theBirthdayBookspecification.
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BirthdayBook ×

InitBirthdayBook × ×

AddBirthday × ×

FindBirthday × ×

Remind × ×

Success ×

AlreadyKnown × ×

NotKnown × ×

RAddBirthday × × × × ×

RFindBirthday × × × × ×

RRemind × × × ×

RemoveBirthday × ×

Modify Birthday × × × ×

Table 4.10: Formal context considering schema names as both objects and
attributes for the extended version of theBirthdayBookspecification. The
corresponding line diagram appears as Figure 4.12.
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Figure 4.12: Line diagram showing schema composition in the extended
BirthdayBookspecification with schema “self-references” included.

Figure 4.13: Zoomed line diagram showing theDateconcept from Figure 4.9.
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BirthdayBook × ×

InitBirthdayBook
AddBirthday × ×

FindBirthday × ×

Remind × ×

Success ×

AlreadyKnown × ×

NotKnown × ×

RAddBirthday × × ×

RFindBirthday × × ×

RRemind × × ×

Table 4.11: Formal context from Table 4.4 with the objects and attributes
corresponding to the zoomed line diagram in Figure 4.13 shown in grey.

4.3.5 Animation and Folding

The final abstractions to be introduced in this chapter are animation and folding, both of

which are used to help users navigate within line diagrams. The term “animation” used

with respect to line diagrams should not be confused with specification animation which

was introduced in Section 1.6.

Folding line diagrams are scales that are constructed, or unfolded, incrementally. As

attributes are added to the scale the line diagram unfolds to reveal the new structure.

Animation is used to provide a smooth transition between the changing layouts [13].

This helps users to retain a sense of “where they are” within the structure of the lattice

and reflects the conceptual knowledge processing task ofidentifying. Attributes can

also be removed to fold or collapse the line diagram and in this way scales can be

constructed interactively. Cole and Eklund discuss the use of folding line diagrams for

scale construction in a medical document management system [38].

In the initial state a folding line diagram contains a single concept containing all the

objects. Figure 4.14 presents three screenshots showing the incremental construction of a

scale within Cernato. The example presented here is based on the case study in Chapter 3

and in the image shown top left two attributes have already been added to the scale. With

the addition of a third attribute (buy season) the diagram again unfolds and the objects are

re-distributed accordingly.
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Figure 4.14: Three screenshots illustrating animation in Cernato.

4.4 Conclusion

While the visualisations presented here only represent the static structure of the

specifications they provide a basis for the interactive exploration and navigation of Z

specifications. Rendering the whole lattice, even for simple examples, is generally not

useful, however, the ability to present only those attributes of interest or to view multiple

scales via nesting facilitates the exploration of large contexts in a useful manner. Folding

line diagrams and animation can also help users retain a sense of “location” within

visualisations of large specifications. These abstractions illustrate the ability to handle

complexity via information hiding as requested by Wing [229].

Various visualisation techniques such as zooming, nesting, and animation are well

105



known and used in FCA as mechanisms to navigate and elaborate structured data. This

chapter has demonstrated that these techniques can also be applied to formal specifications

in an easily understood and natural way. The next chapter introduces a prototype tool that

embodies nearly all of the abstractions described here and a number of implementation

issues are discussed.
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Chapter 5

Specification Browser Implementation

This chapter describes the implementation of a tool developed by the author for

interactively exploring Z specifications. The tool implements the ideas introduced in the

previous chapter by exploiting ZML [195], an XML representation of Z, and the open-

source, cross-platform FCA tool ToscanaJ [16, 15].

Section 5.1 of this chapter discusses Z mark-up and representation issues including

a number of approaches to render Z specifications on the Web. In particular the ZML

language is introduced. Section 5.2 then provides an overview of a number of FCA tools

including ToscanaJ before Section 5.3 describes a tool built using ToscanaJ and ZML. The

remainder of the chapter discusses the implementation of the tool including specification

transformation, context creation and browser integration issues. Two brief overviews of the

implementation have previously been published [199, 200] while Section 5.2 appears in a

paper describing FCA tool support [202].

5.1 Representing Z

The mathematical nature of the Z notation and the graphical nature of schema boxes

present some difficulties when writing specifications on a computer. The required symbols

are unavailable in traditional text editors and there have been various approaches to

representing Z in documents in both human and machine readable forms. Since the ISO

standardisation of Z [104] the required symbols have been incorporated into the Unicode
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\begin{schema}{AddBirthday}

\Delta BirthdayBook \\

name? : NAME \\

date? : DATE

\ST

name? \nem known \\

birthday’ = birthday \union \{name? \map date?\}

\end{schema}

Figure 5.1: Oz style LATEX mark-up for theAddBirthdayschema.

character set [207, 102, 103]. As a result, fonts that support Z are now available for use in

word processors and other applications. Traditionally, however, most Z specifications have

been created using LATEX mark-up.

5.1.1 LATEX Z Styles

There are a number of LATEX style or class files available for Z includingf [187, 186],

ZED [185] and Oz [118]. A specification document is prepared using a text editor and

the schemas are written using mark-up. For example, theAddBirthdayschema in Oz style

mark-up is presented in Figure 5.1. The completeBirthdayBookspecification appears in

Appendix A.

The document is then processed with a style file to produce a final version of the

specification in either PostScript or Portable Document Format (PDF) which can be printed

or viewed using a suitable document reading application. This process encapsulates the

separation of content and presentation and the required rendering steps are illustrated in

Figure 5.2.

In addition to creating human readable specifications, tools can also parse the LATEX

specification mark-up. Most Z tools have traditionally incorporated a formatting system

and a type-checker that accepts Z specifications in LATEX. For example, thef type-

checker checks for type-usage, syntax and scope errors in documents prepared using the

f LATEX style. Other Z tools that process LATEX mark-up input includeCADiZ [206, 205],

ProofPower [127], Wizard [112], Z/EVES [165] and Zeta [88].

CADiZ also includes macros for creating specifications using mark-up for thetroff
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Figure 5.2: Overview of the rendering process from a LATEX source document
to a final PostScript or PDF document.

.ZS AddBirthday

\(*DBirthdayBook

name? : NAME

date? : DATE

.ZM

name? notmem known

birthday’ = birthday sor { name? mlet date? }

.ZE

Figure 5.3: Troff mark-up for theAddBirthdayschema.

typesetting tool for Unix-based systems. TheAddBirthdayschema in troff [43] mark-up

is shown in Figure 5.3.

Z Browser

The Z Browser [147, 137] is an example of a commercial Z specification browsing tool that

provides an alternative to Postscript or PDF rendering. The browser takes specifications

written in thezed style and renders them on the Windows platform using a custom-made

true-type font. A screenshot of the browser displaying theAddBirthdayschema from the

BirthdayBookspecification appears in Figure 5.4.

The browser attempts to address some of the problems for users of large specifications

by providing links between data-type and schema definitions within the specification. For

example, a user can click on a schema name and the definition of the schema will then be

displayed. In addition, all the symbols are linked to an online help system which provides
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Figure 5.4: Screenshot of theAddBirthdayschema in the Z Browser.

information about the symbols and also the notational conventions used in Z for novice

users.

A symbol mapping file that can be edited by users facilitates the extension of the system

to incorporate other LATEX mark-up. In addition, other applications can also use the Z

Browser as a viewer to open specifications and display Z paragraphs via the Windows

platform DDE (Dynamic Data Exchange) protocol. This facility supports the potential

integration of the browser with other tools.

A plug-in version of the Z Browser is also available for Netscape Navigator on the

Windows platform [148]. While the rendered Z symbols are hyperlinked to help files,

cross-referencing within specifications is not supported.

5.1.2 Z in ASCII

The LATEX mark-up approach to Z essentially results in two specifications — one that

is rendered and intended to be read by humans and the other a source file intended for

use by tools. There have been a number of attempts to incorporate the two to create a

representation which is both human readable, retaining as much of the visual appearance

of Z as possible, while also being machine readable. These representations are based
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+-- AddBirthday ---

%Delta%BirthdayBook

name? : NAME

date? : DATE

|--

name? %/e% known

birthday’ = birthday %u% { name? %|-->% date? }

---

Figure 5.5: Z Standard Email mark-up for theAddBirthdayschema.

on simple ASCII characters so no special tool support or rendering is required. The

specifications can be easily incorporated into email and also facilitate the use of Z by

people who are not familiar with LATEX, for example, some university student groups. The

AddBirthdayschema in Z-standard email mark-up is shown in Figure 5.5.

The Alloy notation was briefly discussed in Section 4.1 and it represents an example

of a Z-like ASCII-based language. Alloy is a lightweight formal method based on Z that

provides a straight forward mapping into UML. The notation is also supported by the Alloy

constraint analyser tool, formerly known as Alcoa [106]. While Alloy is only Z-like, ZSL

is an example of an actual ASCII-based Z notation.

ZSL

ZSL is an ASCII-based Z notation that is as mathematically expressive as LATEX mark-up

but not as visually expressive. ZSL has two styles: a text style which is very similar to

the LATEX mark-up shown in Figure 5.1; and a box style which is closer to the traditional

rendered form of Z. TheAddBirthdayschema in ZSL appears in both the “text” and “box”

styles at the top and bottom of Figure 5.6 respectively.

ZSL is designed for use with the ZTC [110] type and syntax checking tool and is also

supported by the ZANS animation tool [111]. In addition to ZSL input, the ZTC tool also

accepts specifications written in either thezed or Oz styles. ZTC can also be used to

translate LATEX mark-ups into ZSL.
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schema AddBirthday

Delta BirthdayBook;

name? : NAME;

date? : DATE;

where

name? notin known;

birthday’ = birthday Union {name? -> date?}

end schema

--- AddBirthday ---------------------------------

| Delta BirthdayBook;

| name? : NAME;

| date? : DATE;

|----------

| name? notin known;

| birthday’ = birthday Union {name? -> date?}

-------------------------------------------------

Figure 5.6: ZSL mark-up for theAddBirthdayschema in both the “text” (top)
and “box” (bottom) styles.

5.1.3 Z on the Web

While ASCII-based representations facilitate communication via email or in newsgroups in

a text-only form, there has also been work to present Z in a rendered form on the Web. As

Ciancarini, Mascolo and Vitali [36] point out there are a number of reasons that support the

use of hypertext for representing Z. First, the relationships between the components such as

schemas within a specification can be represented in the document via hyperlinks. Second,

the ability to publish specifications on the Web supports collaboration and sharing. Finally,

the hypertext medium also facilitates the literate-programming-like notion of interleaving

text with the specifications. Knuth [120] had proposedliterate programsas a way of

combining source code and descriptive text into a single, compilable document. This idea

was further extended by Ryman [164] who also incorporated formal methods with literate

programs.

A first approach to representing Z on the Web is the use of in-line GIF images to

represent Z symbols in HTML documents. Jacky [108] and Stepney [188] both use this
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approach which is platform independent and works with any browser that supports images.

Jacky also provides a script-based toolZ2HTML[108] which translates LATEX specifications

in either thezed or f styles into HTML pages with references for embedded symbol

images. The main drawback of this approach is that the images do not scale and the

appropriate font size must be used. In addition, the images are generally of a low quality

when printed. While it is also possible to create hyperlinks to cross-reference any part of

the specification these are not generated by the tool and would need to be marked-up by

hand.

Applet-based Approaches

An alternative to in-line symbol images is the use of a browser plug-in or Java applet to

render Z within web-pages. These approaches allow text and specification to be interleaved

which supports the literate programming notion. An example from Section 5.1.1 is the Z

browser plug-in, however, this particular implementation has two disadvantages. First, it

is both platform and browser specific, and second, it does not support hyperlinking within

specifications.

The work of Bowen and Chippington [27] and Ciancarini, Mascolo and Vitali [36]

are both applet-based approaches that use the Z Interchange Format (ZIF) [79]. ZIF

is a Standard Generalised Mark-up Language (SGML) [101] based representation of Z

proposed in an early draft of the Z standard for exchanging specifications between different

machines and tools [79]. TheAddBirthdayschema in ZIF mark-up is shown in Figure 5.7.

The format, however, ultimately proved difficult to maintain [211] and was not included in

the ISO Standard. More recently, an XML alternative based interchange format has been

proposed which is discussed in Section 5.1.3.

Ciancarini et al. have createddisplets— display applets — that allow HTML extensions

to be declared and rendered in web-browsers. One of their extensions supports the display

of Z specifications in ZIF and is supported by a tool calledZed2HTML. The tool transforms

specifications written using Oz style LATEX mark-up into a corresponding HTML document

that contains the corresponding ZIF representation. Within the document both the ZIF tags

and their syntax are defined along with the actual specification as parameters to an applet
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<schemadef>

AddBirthday

<decpart>

<declaration> &Delta; AddBirthday </declaration>

<declaration> name?: NAME </declaration>

<declaration> date?: DATE </declaration>

</decpart>

<axpart>

<predicate> name? &notin; known </predicate>

<predicate> birthday’ = birthday &uni; {name? &map; date?} </predicate>

</axpart>

</schemadef>

Figure 5.7: Z Interchange Format mark-up for theAddBirthdayschema.

which loads the appropriate displet for rendering. Hyperlinks are also automatically created

between data types and their declarations and standard HTML can be interleaved within the

specification.

Bowen and Chippington’sZDisplay applet also renders Z specified in ZIF. The

specification can be provided in-line as a parameter to the applet or as input from a separate

file. Their approach does not automatically create hyperlinks between specification

components and the Z symbols are implemented as GIF images.

While both of these approaches use the now-deprecated ZIF, the work was conducted

during the period in which Z was undergoing standardisation. At the time the SGML-

based ZIF was an obvious choice for integration with HTML which is also an application

of SGML.

MathML

MathML [221] is an XML-based mark-up language for rendering mathematics on the Web

and XML, like HTML, it is also based on SGML. This presents another possible rendering

approach for the required Z symbols. MathML is currently supported by the Netscape,

Mozilla and Amaya browsers, however, other browsers still require plug-ins [222].

Unfortunately for the aforementioned applets, MathML was not an implementation option.

MathML version 1.0 was only released in June 1998, by which time papers describing the

applets were already being published.
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While MathML removes the need for plug-ins for most browsers, another approach that

moves rendering responsibility to the browser is the use of Z-compatible fonts. Prior to the

inclusion of Z symbols in Unicode font-based rendering was haphazard because it relied

on custom fonts that may not be available on all platforms or individual fonts may have

used different character mappings for the same symbol. The inclusion of Z symbols in the

Unicode standard means any browser with a suitable Unicode Font can now reliably render

the required symbols and the responsibility for rendering can be shifted to the browser

itself. This is the approach taken by the Z Mark-up Language — ZML.

ZML

ZML is an XML representation for Z originally developed by Sun, Dong, Lui and

Wang [195, 194] at the National University of Singapore. They chose XML over MathML

because their original aim in ZML was to provide a Web environment as close as possible

to the Oz LATEX style for Object-Z to minimise translation requirements. They argue that

not only are the schema boxes more difficult to construct in MathML but also the large

number of tags which focus on the structure of expressions detracts from MathML’s use for

model abstraction. Figure 5.8 presents theAddBirthdayschema in ZML and the complete

BirthdayBookspecification in ZML, LATEX and rendered form appears in Appendix A.

The eXtensible Stylesheet Language (XSL) [220] covers a family of languages used

for processing XML documents. One of these languages — XSL Transformations (XSLT)

— can be used to transform one XML document into another XML format or to transform

XML into HTML. ZML makes use of XSLT to transform the XML-based specification into

a HTML document that can then be displayed in a web-browser. The process is illustrated

in Figure 5.9. An XSL stylesheet describes the transformation rules which are then applied

via an XSLT processor to produce a HTML version of the specification. Note the parallel

with the process required for specification in LATEX mark-up from Figure 5.2.

The structure of XML documents can be described using one of two formats: either a

Document Type Definition (DTD) which originated in SGML; or XML Schema [223] —

an XML language for describing the structure of XML documents. ZML makes use of both

formats. The structure and syntax of ZML is described using XML Schema and this can
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<schemadef layout="simpl" align="left">

<name>AddBirthday</name>

<del>

<type>BirthdayBook</type>

</del>

<decl>

<name>name?</name>

<dtype>

<type>NAME</type>

</dtype>

</decl>

<decl>

<name>date?</name>

<dtype>

<type>DATE</type>

</dtype>

</decl>

<st/>

<predicate>name? &nem; known</predicate>

<predicate>birthday’ = birthday &uni; {name? &map; date?}</predicate>

</schemadef>

Figure 5.8: ZML mark-up for theAddBirthdayschema.

Figure 5.9: Overview of the rendering process from a ZML source document
to a final HTML document. Note the parallel with Figure 5.2.
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Figure 5.10: Screenshot of theBirthdayBookspecification rendered using
HTML and Unicode in a web-browser. TheAddBirthdayschema is shown.
Note the underlined hyperlinks used for schema and data-type definitions.

be used by XML-aware tools and browsers to validate the syntax of a ZML specification.

ZML also provides a DTD to describe mappings between LATEX style Z symbol names (e.g.

uni for set union), and their corresponding Unicode characters (#x222a). HTML supports

Unicode for character encoding so a browser with a Unicode font can render the required

symbols in a HTML version of the specification. Figure 5.10 presents a screenshot of the

BirthdayBookspecification displayed in a web-browser.

Client-side XSLT processing has been available since version 5 of the Internet Explorer

web-browser and Microsoft also provides a 23 Megabyte TrueType Unicode Arial font

in their Office 2000 distribution. Equipped with these two tools it is possible to render

a ZML specification directly in the browser as illustrated in Figure 5.11. In terms of

platform independence, the ZML can be rendered in any browser for which a Unicode

font is available and the XSLT processing can be performed server-side to make ZML

specifications available to older browsers that do not support XSL.

In terms of the arguments put forward by Ciancarini et al. for using hypertext-based

specifications, ZML allows descriptive text to be interleaved with the schemas in a ZML
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Figure 5.11: The XML to HTML transformation via XSLT shown in
Figure 5.9 can be performed within the browser.

document and hyperlinks to schema and data-type definitions are automatically created

during XSLT processing. In addition ZML also provides automatic expansions for the ‘∆’

and ‘Ξ’ conventions, schema calculus, and inheritance in Object-Z. This functionality is

achieved by exploiting the match facilities in XSL to locate the required definitions within

the specification.

Figure 5.12 presents two screenshots of theRRemindschema from theBirthdayBook

specification as displayed in a web-browser. The top schema shows the unexpanded linear

form. Note that theRemindand Successschemas are presented as hyperlinks back to

their earlier definitions in the specification. The ‘�’ icon denotes that an expansion of

the schema is available. Clicking on the icon produces the lower schema showing the

expansion of the schema composition. The schema can now be collapsed back to the linear

form by clicking on the ‘�’ icon. Alternatively, the schema can be further expanded to

make theΞ shorthand explicit.

Although a font is used to display and print the Z symbols, ZML still makes some

use of images to render schema boxes. The scalability is only limited, however, by the

available Unicode font sizes and in addition to Z and Object-Z, ZML also supports the

Timed Communicating Object-Z (TCOZ) notation [133, 134].

This initial version of ZML was influenced not only by Spivey’s version of Z [184],

but also by Object-Z [174] and TCOZ [133]. The XML element names were chosen to
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Figure 5.12: Two screenshots of theRRemindbirthday schema illustrating
schema expansion in ZML. The top schema shows the unexpanded linear form.
Note the ‘�’ expand and ‘�’ collapse icons.

provide a straightforward mapping from LATEX specifications and both animation and type-

checking tools based on the format have been reported [51, 196]. Furthermore, Sun et al.

have also demonstrated techniques and tools to project Object-Z ZML specifications into

UML [195].

An alternate, more detailed version of ZML for machine interchange has also been

defined. In contrast with Figure 5.8, Figure 5.13 presents theAddBirthdayschema using

the fully annotated form of ZML [192, 49]. This version of the mark-up has a more

extensive tag set. Rather than consisting of the traditional declarative part and a predicate

(formula) part the schemas now contain a list of<declaration> and <predicate>

elements. In Figure 5.8 a predicate tag contains a complete predicate however the new

version requires each atom to be explicitly identified via tags. The transformation from

a LATEX representation of Z into this version of ZML is no longer quite so “trivial”.

Additionally, an updated version of the “interchange” format based on Standard Z has also

been produced [50].
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<schemaDef>

<name>AddBirthday</name>

<deltaList>BirthdayBook</deltaList>

<declaration>

<variable>name?</variable>

<dataType>

<type>NAME</type>

</dataType>

</declaration>

<declaration>

<variable>date?</variable>

<dataType>

<type>DATE</type>

</dataType>

</declaration>

<predicate>

<expression>

<varName>name?</varName>

</expression>

<relationSym>nem</relationSym>

<expression>

<varName>known</varName>

</expression>

</predicate>

<predicate>

<expression>

<expression>

<varName>birthday</varName>

</expression>

<postfixExpr>’</postfixExpr>

</expression>

<relationSym>=</relationSym>

<expression>

<expression>

<varName>birthday</varName>

</expression>

<exprConnSym>uni</exprConnSym>

<expression>

<left>{</left>

<expression>

<left>(</left>

<expression>

<expression>

<varName>name?</varName>

</expression>

<exprConnSym>,</exprConnSym>

<expression>

<varName>date?</varName>

</expression>

</expression>

<right>)</right>

</expression>

<right>}</right>

</expression>

</expression>

</predicate>

</schemaDef>

Figure 5.13: TheAddBirthdayschema marked-up using the “interchange”

version of ZML.
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Other XML-based Z Representations

As with the plethora of LATEX and ASCII mark-up languages for Z there are also a number

of XML-based alternatives to ZML. These representations are typically associated with

tools and are more aligned with the “interchange” version of ZML described above.

Z/EVES [149], for example, uses an XML interchange format for passing specifications

between tools. Wordsworth [231] and Toyn [211] have both proposed DTD-based XML

representations for Z. Wordsworth’s implementation is based on Spivey’s notation while

Toyn’s representation for Standard Z was heavily influenced by the abstract syntaxes of

both Zeta [88] and his ownCADiZ tool [205]. CADiZ is able to export specifications in

XML format.

Most recently, however, a new version of ZML has emerged whose authors include

Toyn, Sun and Dong from the National University of Singapore, and Martin [135] of the

Community Z Tools initiative, among others [211]. This annotated interchange notation

is defined using XML Schema but is largely based on Toyn’s earlier DTD representation.

It effectively represents an XML-based alternative to ZIF which was ultimately dropped

from the Z Standard. The format’s authors hope that in the future this version of ZML may

become an integral part of the ISO Z standard.

Despite this recent advance, however, Section 5.3 describes the implementation

of a prototype specification navigation and visualisation tool that exploits the initial

implementation of ZML in combination with an open-source FCA tool. There are a number

of reasons for using ZML and the early version in particular. First, ZML effectively

permits both the editing and visualisation of Z specifications from a single document.

Although transformation to HTML is still required this can be handled transparently

and automatically by the browser using XSLT. Browser-based specifications can also

be delivered and shared online and the hyperlink anchors can be exploited by tools as

a way of displaying any schema or data-type declaration within a ZML specification.

Furthermore, ZML automatically creates intra-specification hyperlinks and supports the

automated expansion of schema inclusions, calculus and inheritance.

In addition to the reasons outlined above, the initial version of ZML was chosen to
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implement the tool prototype because the direct mapping between the LATEX mark-up and

the initial version of ZML makes transformation from existing LATEX specifications easier.

The mark-up is also simpler to read which aids debugging. Debugging is further supported

by the direct correspondence between the two mark-ups.

Having introduced ZML, and discussed some of the representation issues with Z, the

next section now turns back to FCA. Section 5.2 provides an overview of FCA tool support

before the implementation of the specification navigation and visualisation tool is discussed

in Section 5.3.

5.2 FCA Tools

This section provides an overview of FCA tool support. These tools reflect the

recent history of computing which ranges from the early DOS-based implementation of

Duquenne’s GLAD tool in FORTRAN to platform-independent Java-based tools currently

under active development like ConExp and ToscanaJ. Both commercial and open-source

software appears in the list which also includes general-purpose and application-specific

tools.

In particular, the overview provides some insight into the work-flow and design of the

ToscanaJ tool which embodies ideas refined over a number of generations of software.

A number of line diagrams summarising features of the general tools are presented in

Section 5.2.9.

5.2.1 GLAD

Duquenne’s tool for General Lattice Analysis and Design (GLAD) is possibly the earliest

software tool that facilitates the analysis of formal concept lattices [54, 53, 55]. GLAD

is a DOS-based program written in FORTRAN that has been under development since

1983. The tool facilitates the editing, drawing, modifying, decomposing and approximation

of finite lattices in general and is not restricted to the analysis of concept lattices. The

lattices to be analysed can be derived from abstract mathematics or applied statistics using

techniques like Analysis of Variance. Single-valued data can also be analysed by exploiting
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Figure 5.14: A lattice diagram produced by Duquenne’s GLAD tool. The
lattice represents agluing decomposition of questionnaire results about right-
handed writers.

the classic correspondence between lattices and binary relations identified by Birkhoff [19].

Lattice diagrams can be output directly from GLAD in the Hewlett Packard Graphics

Language (HPGL) [30] — a vector-based language designed for plotters. Figure 5.14

presents a line diagram produced by GLAD which originally appears as Figure 2 in a

paper describing the application of Galois lattices to behavioural genetics [55]. The lattice

represents anun-gluingdecomposition of questionnaire results about right-handed writers.

Un-gluing breaks a large lattice into smaller lattices by separating them along common

substructures [78].

GLAD contains a large number of features, many of which are undocumented and it

also supports “scenarios” which represent a form of macro. These scenarios can be used to

regenerate and manipulate a lattice by recalling the list of commands used to construct it.

123



Figure 5.15: Three screenshots of the DOS-based ConImp tool. The context
editing screen is shown top left, the display of concepts at bottom left and the
main menu on the right.

5.2.2 ConImp

ConImp (Contexts and Imp lications) is another DOS-based tool implemented by

Burmeister [32] who started development in 1986 on an Apple II computer. While ConImp

is purely text-based and provides no graphical output for lattices it also supports a wide

range of features for manipulating contexts and provides concept listings which can be

used for drawing line diagrams by hand.

Three screenshots of the DOS-based ConImp tool are shown in Figure 5.15. The top

screenshot shows the planets example from Table 1.1 in the context editor screen. The

main menu displaying the large number of available options is shown centre right while the

concept list is shown at the bottom.

The Duquenne-Guiges-baserepresents a canonical base of valid implications for a
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Figure 5.16: Screenshot of the planets example from Figure 1.2 rendered using
Diagram— a DOS-based tool that supports additive line diagrams.

given context and this is computed and used extensively within ConImp. Interactive

attribute exploration is supported which can be used to derive both the Duquenne-Guiges-

base and a typical set of objects as described in Section 1.5.7. In addition, a three-valued

logic that allows fortrue, falseandunknownvalues can also be used.

The round-trip engineering work of Bojic and Velasevic [21] was discussed earlier in

Section 2.3. By adapting the output from the Microsoft Visual C++ profiler they were able

to use ConImp to analyse their data.

While ConImp supports single-valued contexts another tool calledMBA (possibly from

the German for “Many-valued FCA”:“ MehrwertigeBegriffsAnalyse”) can be used to scale

and pre-process many-valued contexts [93]. In addition, contexts can be exported from

ConImp in the so called “Burmeister Format” (‘.CXT’) and rendered using another DOS-

based tool calledDiagram [93]. Figure 5.16 presents a screenshot of Diagram. The use of

separate tools for the tasks of data preparation, context creation, and line diagram rendering

is also reflected in the classic FCA tools A and T.
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5.2.3 A and T

A and T are tools used for building conceptual knowledge systems on top

of data stored in relational databases. As Wille explains:

The name “T” (= Tools of ConceptAnalysis) was chosen to indicate

that this management system allows us to implement conceptual landscapes

of knowledge. In choosing just this name, the main reason was that Tuscany

(Italian: TOSCANA) is viewed as the prototype of a cultural landscape which

stimulated many important innovations and discoveries, and is rich in its

diversity and attractive for wandering in [227].

Figure 5.17 presents an overview of the creation of a conceptual knowledge system

as described by Becker and Hereth [16]. The process typically starts with the data to

be analysed which is stored in a relational database. A conceptual system engineer uses

knowledge from a domain expert to create queries in the form of conceptual scales using a

conceptual system editor. These scales essentially capture the expert’s knowledge and the

information is stored in aconceptual system file. A user can then exploit the conceptual

scales to retrieve or analyse data from the database using aconceptual system browser.

In traditional T systems A is the conceptual system editor, T is the

conceptual system browser, and the data is stored in a Microsoft Access database.

A is a tool for the creation and editing of contexts, line diagrams and scales.

Figure 5.18 presents a screenshot of A creating a version of the line diagram from

Figure 3.1. The context, scales and line diagrams are saved in a conceptual schema file

which is then used by T to analyse the data in the database. While T users

cannot create new scales, the scales can be composed to produce nested line diagrams.

There are three versions of T based on Vogt’s C++ FCA libraries [218, 89] and

more recently a Java-based version — ToscanaJ.

5.2.4 ToscanaJ

ToscanaJ [15, 16] is a platform-independent implementation of T that supports

nested line diagrams, zooming and ideal/filter highlighting. Originally part of the Tockit
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Figure 5.17: The T workflow.

project [14] — an open source effort to produce a framework for conceptual knowledge

processing in Java — ToscanaJ is now a separate project [15].

In the context of Figure 5.17, ToscanaJ represents the conceptual system browser while

the conceptual system editor role is filled by two tools —SienaandElba. The two tools

can be seen as A replacements that are both used for preparing contexts and scales,

however, each represents a different workflow. Elba is used for building ToscanaJ systems

on top of relational databases while Siena allows contexts to be defined using a simple point

and click interface. In addition, Siena provides the facility to import data in A

‘.CSC’ format, ConImp’s Burmeister ‘.CXT’ format, and the XML export format from

Cernato. The Cernato tool is introduced in Section 5.2.5.

ToscanaJ can be used to analyse data in relational databases via ODBC (Open Database

Connectivity)/JDBC (Java Database Connectivity) or, alternatively, an embedded relational

database engine within ToscanaJ can be used. Line diagrams can also be exported

in a variety of raster and vector-based formats including Portable Network Graphics

(PNG), Joint Photographic Expert Group (JPEG), Encapsulated PostScript (EPS), Portable

Document Format (PDF), and Scalable Vector Graphics (SVG). Figure 5.19 shows two

screenshots of the Siena editor and ToscanaJ and except where noted otherwise the line
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Figure 5.18: Screenshot of A showing the formal context and line
diagram windows. Note that the line diagram is the same as Figure 3.1 which
was rendered using ToscanaJ.

diagrams in this thesis were produced using Siena and ToscanaJ.

An XML-based conceptual schema file (.CSX) is used to store the context and scales

produced by Siena and Elba. In addition, an extensible viewer interface allows custom

views within ToscanaJ to be defined as well as allowing external data viewers to be

specified. The formal specification browser described in Section 5.3.3 makes use of this

feature and further details are presented in that section.

The layout and manipulation of line diagrams in Siena and Elba is implemented using

ann-dimensional layout algorithm in which each attribute in the purified context is assigned

to a vector [13]. The layout is then projected onto the Cartesian plane using standard

parallel projection and the approach is based on the algorithm used in Cernato.
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Figure 5.19: Two screenshots showing the Siena editor top left and ToscanaJ
version 1.1 lower right. Note the diagram preview shown in the bottom left
corner of the ToscanaJ screenshot which can be used to preview conceptual
scales.
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Figure 5.20: Screenshot of the Cernato context and line diagram windows.
Note that the line diagram is the same as Figure 3.1 which was rendered using
ToscanaJ.

5.2.5 Cernato

Cernato is a commercial FCA tool developed by Navicon [144] that combines some of the

features of A and T into a single tool. Users are presented with a familiar

spreadsheet-like interface for creating contexts and data can be imported and exported in

Comma Separated Value (CSV) format which facilitates the analysis of data from genuine

spreadsheet applications. A screenshot of the Cernato context editing and diagram windows

is shown in Figure 5.20.

Line diagrams are constructed incrementally in Cernato and the layout is animated

by default. Figure 4.14 in Chapter 4 depicts the animation of a line diagram in Cernato.

Zooming and the construction of scales, which are known as “views” in Cernato, are also

supported, however, nested line diagrams are not. In addition to the CSV import/export

facility a custom XML format can also be used. Furthermore, line diagrams can be exported

in a number of raster-based image formats, contexts can be saved as HTML tables and
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Figure 5.21: Two screenshots of ConExp showing the “context editor” pane
(top) and the “lattice line diagram” pane (bottom). Note that the line diagram in
the lower image is the same as Figure 4.3 which was rendered using ToscanaJ.

Cernato is also able to export complete T systems.

5.2.6 ConExp

ConExp (ConceptExplorer) [234] is another Java-based, open-source FCA project. Like

Cernato, ConExp combines context creation and visualisation into a single tool. Two views

of the ConExp interface are shown in Figure 5.21. The “context editor” pane is shown at the

top while the “lattice line diagram” pane appears at the bottom. Note that the line diagram

corresponds to Figure 4.3 which was rendered using ToscanaJ.

While ConExp does not support database connectivity, contexts can be imported and

exported in ConImp’s ‘.CXT’ format. A number of lattice layout algorithms can be

selected including chain decomposition and spring-force algorithms. The line diagrams

also support various forms of highlighting including ideal, filter, neighbour and single
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concept highlighting and can be exported in JPEG or GIF format.

ConExp currently implements the largest set of operations from Ganter and Wille’s

FCA book [78] including calculation of association rules and the Duquenne-Guiges-base

of implications. The context editor can display the arrow relationsg↗m andg↙m, and

interactive attribute exploration is also supported.

5.2.7 IMPEX

IMPEX is a DOS-based tool that also provides attribute exploration. It is based on

algorithms by Ganter [75] and it can calculate implications with background knowledge

either automatically or interactively. In addition to a custom ‘.DAT’ format for reading

contexts and implications IMPEX can also import and export contexts in ‘.CXT’ format.

All output is written to text files which can then be viewed using an inbuilt text-editor.

5.2.8 GaLicia

GaLicia, the Galois Lattice Interactive Constructor [212, 213], is another Java-based FCA

tool that provides both context creation and visualisation facilities. GaLicia’s heritage lies

in a series of incremental data mining algorithms originally entitled theGA L-

 I C I A and also atrie data-structure-based version

called G-T. These incremental algorithms were used for mining association rules in

transaction databases [215, 214] and form the basis for the incremental construction of

lattices in GaLicia.

Both single and many-valued contexts can be analysed in GaLicia. In addition, binary

relationships between objects can also be described via a context and stored using GaLicia’s

Relational Context Family (‘.RCF’) format [97]. These inter-object relationships can

be used to produce views like Figure 4.6 showing the relationships between schemas.

A number of different lattice and Galois sub-hierarchy construction algorithms are also

supported.

GaLicia provides two lattice layout mechanisms including a “magnetic” spring-force

algorithm. The lattices can also be viewed using a novel, rotating 3-Dimensional view
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ConImp DOS, Atari (Linux) × extended × three-valued × ×

MBA DOS, Atari × many-valued
Diagram DOS × DOS
Cernato Windows 9x/NT many-valued ×

Concept Explorer Java 2 basic × × binary × ×

Anaconda Windows 9x/NT, Atari binary × × × Win ×
Toscana3 Windows 9x/NT ODBC × Win ×
ToscanaJ Java 2 JDBC × Java ×
CXT2CSC DOS (Linux) ×

CSC2CSX DOS (Linux) ×

Table 5.1: Multi-valued context summarising tool features from Plüshcke’s
web-site [153].

where the nodes are laid out on the surface of a sphere. GaLicia can be run as a stand-

alone application or it can be used via the Web as a Java applet running in a web-browser.

Figure 5.22 presents a screenshot of GaLicia running as a stand-alone application. The

trellis, or lattice, window is shown top right and the context editing window at the lower

left.

5.2.9 Generic Tools Summary

While the preceding sections introduced the generic FCA tools this section now provides

an overview of their features via a number of concept lattices. As a starting point Table 5.1

presents a context compiled by Plüschke as part of the requirements analysis process for

the Tockit project [153]. This multi-valued context summarises the features of a number

of existing FCA tools. The derived one-valued context in Table 5.2 extends Table 5.1

to include all of the tools described in Sections 5.2.1 to 5.2.8. In addition the one-

valued context also includes additional attributes for image export formats and the FCA

abstractions introduced in Section 4.3 of Chapter 4.

An overview of the basic functionality provided by the tools is presented in Figure 5.23.

The line diagram is based on a sub-context of Table 5.2 and summarises the tools’ ability

to edit, view and print diagrams, edit contexts, access a database, and export images. Note
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Figure 5.22: GaLicia screenshot showing atrellis (lattice) window top right
and the context editing window lower left. The context corresponds to the
planets example in Table 1.1 and the lattice to Figure 1.2. Also note the tab for a
second context editing pane which can be used to describe binary relationships
between the objects.
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ConExp × × × × × × × × × × × × ×

ConImp × × × × × × × × × ×

CSC2CSX × ×

CXT2CSC × ×

Diagram × × × ×

Elba × × × × × × × × × × × × × × × × × ×

GaLicia × × × × × × × × × × ×

GLAD × × × × ×

IMPEX × × × ×

MBA × × × × × ×

Siena × × × × × × × × × × × × × ×

T3 × × × × × × × × ×

ToscanaJ × × × × × × × × × × × × × × × × × × ×

Table 5.2: Derived one-valued context summarising features of the general-
purpose FCA tools.

that the attributes for GLAD have been taken from the available literature rather than the

tool itself so the summary of features may be incomplete.

At the top of the line diagram are three tools that do not provide any of these basic

features: CSC2CSX, CXT2CSC and IMPEX. CXT2CSC and CSC2CSX, as their names

suggest, are file format conversion tools. As such they are not concerned with context

editing or the visualisation of diagrams. CXT2CSC converts contexts stored in ‘.CXT’

format into the ‘.CSC’ format used by A and T. Similarly, the CSC2CSX

tool makes ‘.CSC’ files accessible to ToscanaJ and the associated Elba and Siena editors.

The third tool at the top of the diagram, IMPEX, is an implication and attribute exploration

tool. It does provide simple text editing facilities, however, all of the other tools categorised

with the “Context Editor” attribute provide functionality specifically for context editing.

The role of T3 and ToscanaJ as viewing applications can also be observed in the

line diagram. T3 and ToscanaJ do not have context or diagram editing facilities

because this functionality is provided by the corresponding A, Elba and Siena

editors. A and Elba are also the only general-purpose tools that implement all
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Figure 5.23: Line diagram of a sub-context from Table 5.2 summarising basic
features of the generic tools.

of the basic features.

Figure 5.24 presents a line diagram based on a second sub-context of Table 5.2. This

diagram provides an overview of the general-purpose tools based on functionality relevant

to the discussion in Chapters 3 and 4: FCA abstractions, implication calculation, and

attribute exploration.

From the diagram it can be seen that while Cernato, T3 and ToscanaJ all support

zooming and scaling there is no single general purpose tool that currently supports all four

of the abstractions. Nested line diagrams are only available in T3 and ToscanaJ

while Cernato is the only tool that animates the layout of line diagrams. There is also no

intersection between tools that support the abstraction mechanisms and those that calculate

implications or provide attribute exploration.

Another one-valued context describing the file formats read and written by the generic

FCA tools is presented in Table 5.3. Again, it should be noted that the feature summary
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Figure 5.24: Line diagram summarising tool support for FCA abstractions,
implications and attribute exploration.

of GLAD is taken from the available literature rather than the tool itself and there is no

mention of the read/write formats used.

A line diagram representing the file formats read by the tools in Table 5.3 appears in

Figure 5.25. There are three items of interest: the format supported by the most tools; the

tool that supports the most formats; and the tool that shares the most formats with other

tools.

The format supported by the most tools is the ‘.CXT’ or Burmeister format originally

used in ConImp. This text-based format stores the details of a binary context and can be

read by seven of the tools described here. The wide adoption of the format is likely due to

a number of factors including its simplicity, the obvious need for FCA tools to store and

share contexts, and the fact that it was already in existence and being used when the other

tools were created.

Beyond one-valued contexts, however, tools also need to store and retrieve a range of

information that includes lists of implications, multi-valued contexts and diagram layouts.

For example, Diagram relies on other tools to provide contexts in ‘.CXT’ format. It creates

line diagrams and then saves the concept lattice layout details in a ‘.LAT’ file. This is the

case for many of the tools which use their own custom formats in addition to ‘.CXT’ for
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Figure 5.25: Concept lattice based on a sub-context of Table 5.3 showing the
file formats read by the generic FCA tools.

storing information. Ultimately this results in the surprisingly large number of formats

present in Table 5.3 where there is much “re-invention of the wheel”. The need for a

suitably flexible yet standard and therefore interoperable extension of the ‘.CXT’ format for

storing contexts and diagrams has been discussed within the Tockit project community [17].

While ‘.CXT’ is the most widely read format, GaLicia is the tool that reads the most

formats. GaLicia reads and writes nine formats, however, four of these are simply XML

versions of other GaLicia formats. For example, ‘.RCF.XML’ is an XML version of the

‘.RCF’ Relational Context Family format. In Figure 5.25 GaLicia also stands out as the

only tool that does not share any formats in common with other tools — there is no file-

level interoperability with any of the other tools. In contrast to GaLicia, Siena shares the

widest intersection of formats with other tools.

5.2.10 Application Specific Tools

In addition to the generic tools described in the preceeding sections there are also a number

of application-specific FCA tools. These tools can be broadly classified into two main

groups: themonolithic and themodular. Tools that rely on other programs for part or
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all of their functionality will be classified as “modular”. For example, a number of the

application-specific tools make use of pre-existing graph drawing applications for lattice

layout. In contrast the term “monolithic” will be used to describe those tools which do

not rely on other applications to function. This does not, however, exclude the use of pre-

existing libraries within the tools code. Additionally, the term should not infer that a tool is

poorly engineered or necessarily massive, but rather that the tool has been constructed from

scratch. The next section of this chapter introduces the monolithic tools and the modular

tools are discussed in Section 5.2.10.

Monolithic Approaches

Düwel’s BASE [57] tool supports the identification of class candidates from use-cases

using the methodology applied in Chapter 3. The name is taken from the German“ein

BegriffsbasiertesAnalyseverfahren für dieSoftware-Entwicklung” which translates into

English as “concept-based analysis during software development”.

Taran and Tkachev’s [197] tool SIZID is designed to support the analysis of sociological

and psychological data. SIZID can handle multi-valued contexts and the calculation of

implications.

Cole and Eklund have implemented a number of FCA-based document management

and information retrieval tools.Warp-9 FCA[38] is a tool for managing a collection

of medical discharge documents that is implemented using the scripting and extension

language Tcl/Tk [198]. A medical ontology is used to index documents and the

visualisation supports folding line diagrams. The ideas inWarp-9 FCA are further

refined and applied to the analysis of email in the tool CEM — the Conceptual Email

Manager [38, 39]. More recently a commercial descendant of CEM known asMail-Sleuth

has also been released [66].

In Lindig and Snelting’s [132] paper on the structure of legacy code a footnote mentions

an inference-based software environment called NORA which was used to produce the

analyses described in the paper. NORA stands for “NO Real Acronym”. While no

details of the NORA environment are presented in the paper, both Snelting and Lindig

have produced other tools to support the analysis of software using FCA. Snelting and
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Streckenbach’sKABA tool was briefly mentioned in Section 2.6.1. KABA is a Java-based

tool that implements the analysis earlier described by Snelting and Tip [178, 179]. The

name KABA is taken from the German “K lassenAnalyse mitBegriffsAnalyse” which

translates as “class analysis via concept analysis” in English. Apparently “KABA” is also

the name of a popular chocolate drink in Germany.

KABA combines concept lattices with dataflow analysis, and type inference. In

particular the prototype tool supports the visualisation of horizontal decompositions in Java

classes and a 15 KLOC example is reported.

While another prototype tool that implements Lindig’s component retrieval ideas could

be considered monolithic [128], there have been a number of modular tools developed

using Lindig’sconceptsframework.

Modular Approaches

Concepts[131] is an updated version of Lindig’sTkConcepttool [129, 130] which is

implemented in Tcl/Tk. TkConcept is included here as an example of a modular tool

because it makes use of a graph layout application called Graphplace [61] to draw lattice

diagrams. TkConcept was intended as a framework for concept analysis applications that

provides basic abstractions so that software designers can focus on the implementation of

domain specific parts of an application.

Van Deursen and Kuipers [216] used Lindig’sconceptstool in conjunction with

Graphplace in the analysis of a 100 KLOC COBOL program. A relational database was

used to derive information about the application using a COBOL lexical analysis tool. The

data was then extracted and formatted for analysis withconcepts.

TheConceptRefinerytool described by Kuipers and Moonen [123] also usesconcepts

in conjunction with a COBOL parser and a relational database. Concept refinery is

implemented using Tcl/Tk and a version of thedot directed graph drawing tool was used

for visualisation. Dot is part of the GraphViz graph visualisation package [10].

GraphViz and concepts are also used to render lattice diagrams in Eisenbarth, Koschke

and Simon’sBauhaustool [64]. Bauhaus makes use of a number of components including

thegcccompiler andgprof profiler which are glued together using Perl [151]. In addition
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to their earlier work identifying features in web-browser code, Eisenbarth et al. have also

used their tool to analyse a 1,200 KLOC production system [63, 62].

The Cable tool implemented by Ammons et al. makes use of FCA to aid in the

debugging of temporal specifications [5]. The visualisations presented to Cable users are

implemented using the Dotty and Grappa graph visualisation tools which are also part of

GraphViz.

JaLaBA is a novel on-lineJava Lattice Building Application implemented by

Janssen [109] that uses Freese’sLatDraw [73] program for lattice layout. LatDraw makes

use of a 3-dimensional spring and force layout algorithm which produces line diagrams

similar to GaLicia and ConExp.

The round-trip engineering work of Bojic and Velasevic [21] discussed earlier in

Section 2.3 clearly meets the definition of a modular tool. By adapting the output from

the Microsoft Visual C++ profiler ConImp was able to analyse their data which was then

used to update a UML model using the Rational Rose design tool [98].

Richards and Boettger et al.’s RECOCASE tool [24] is also comprised of a number of

other applications. RECOCASE uses the Link Grammar Parser [173, 172] to parse use-

cases and ExtrAns [170, 169] is used to generate the flat logical forms which are then

analysed using FCA.

The CANTO tool (Code and Architecture aNalysis TOol) [7] described by

Tonella [203] has a modular architecture composed of several subsystems. CANTO

consists of a front-end for analysing C code, an architecture recovery tool, a flow analysis

tool and a customised editor. The components communicate either via sockets or files

and apart from the flow analysis tool each of the components is an external application.

Visualisations produced by the architecture recovery tool are created using PROVIS — yet

another graph drawing application based on Dotty.

Another FCA framework implemented by Arévalo [8, 9] and Buchli [31] is ConAn

(ConceptAnalysis) [31]. ConAn is implemented in Smalltalk and consists of a number of

tools for the creation and analysis of formal contexts. A tool calledConAn PaDi(ConAn

PatternDisplayer) built using the ConAn framework is used for analysing patterns in data
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from theMooseSmalltalk re-engineering environment [1]. Beyond software engineering

applications ConAn also represents a generic and extensible framework. Users can provide

objects and attributes (known respectively aselementsandproperties) as labels in a table

or custom Smalltalk objects can be implemented to represent the elements and properties

used by ConAn.

While the preceding sections introduced a range of FCA-based tools the next section

describes the implementation of a new tool that mirrors the modular approach taken by Van

Deursen and Kuipers. This tool makes use of a parser to extract information which is stored

in a database. The information is then formatted for analysis using an external visualisation

application. The tool is called SpecTrE — theSpecification andTr ansformationEngine.

5.3 Specification Transformation Engine (SpecTrE)

SpecTrE is a tool for visualising and navigating Z specifications using FCA that implements

the ideas presented in Chapter 4. In the tradition of the modular tools described in the

previous section, the implementation of SpecTrE makes use of a number of discrete tools

and existing applications.

The SpecTrE tool performs two main functions the first of which is the transformation

of Z specifications written in Oz style LATEX into ZML. The second function is the creation

of a formal context from the specification which can then be used to visualise and navigate

the specification. Both the LATEX to ZML transformation and the context creation processes

can be performed in times comparable with normal LATEX processing. This is consistent

with Clarke and Wing’s call for Formal Methods tools that work in times comparable with

compilation [37]. An overview of the process starting with a LATEX source specification is

presented in Figure 5.26.

The original LATEX specification is first transformed into ZML using an application

calledtex2zml. Once in ZML format the specification can be rendered on demand in a

web-browser using the appropriate XSL stylesheet. This ZML version of the specification

is also used as input to another tool calledspec2db which parses the specification and

creates a formal context which is stored in a relational database. A conceptual schema file
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Figure 5.26: Overview of the specification transformation and exploration
process using SpecTrE.

describing the structure of the context is also created.

The conceptual schema file created byspec2db can be opened using either the Siena

or Elba editors for ToscanaJ and suitable scales can then be constructed. ToscanaJ can

then be used to visualise and interactively navigate the specification via the application of

conceptual scales. If a user wishes to view the original specification they can click on a

schema name in the line diagram and a web-browser will then be launched to display the

appropriate schema using the ZML version of the specification. This implementation fulfils

the aim of providing an FCA-based alternate visual representation for formal specifications

that can be used alongside existing tools. Users can explore a specification using FCA and

then “drill down” into the original specification as required.

The implementation details of thetex2zml transformation andspec2db context
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...

<rule id="41" type="replace">

<old>\union</old>

<new>&uni;</new>

</rule>

<rule id="42" type="replace">

<old>\uni</old>

<new>&uni;</new>

</rule>

...

<rule id="149" type="pattern" >

<old>\\Delta\s+([\w]+)\s+(\\\\)?</old>

<new> &lt;del&gt;

&lt;type&gt;$1&lt;/type&gt;

&lt;/del&gt;</new>

</rule>

...

Figure 5.27: Three of the transformation rules used to translate specifications
written using Oz LATEX mark-up into ZML format.

creation tools are discussed in Sections 5.3.1 and 5.3.2 respectively. Issues relating to

the web-browser integration with ToscanaJ for viewing specifications are discussed in

Section 5.3.3 and a Graphical User Interface (GUI) front-end is described in Section 5.3.4.

5.3.1 Specification Transformation

The implementation of thetex2zml tool relies on the fact that the tag names in ZML were

chosen to directly correspond with names used in the Oz style LATEX mark-up. The tool

works by applying a series of transformation rules to the original specification until no

further transformations are possible. The rules are defined in an XML file and two types of

rules are used. See Figure 5.27.

Replacement rules are used to match whole words that are directly substituted. For

example, rules 41 and 42 in Figure 5.27 match on either of the two mark-ups for the set

union operator\union or \uni which are then replaced with&uni;.

The second type of rule uses patterns to match and transform structures using regular

expressions. For example, rule 149 would match on a line containing the LATEX mark-up
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for a ‘∆’ schema like “\Delta BirthdayBook \\” and replace it with:

<del>

<type>BirthdayBook</type>

</del>

The “id” numbers within the<rule> tags are used for debugging purposes and the

pattern rules are implemented using the GNU regexp library for Java [18]. While the

replacement rules could also be written as pattern rules the “replace” rule type is included

for convenience and readability.

ZML was used for the prototype implementation of SpecTrE because the XSL

transformation for browser rendering is performed automatically in XSLT-enabled

browsers. Server-side XSLT processing can also be used to support non-XSLT browsers.

The intra-specification hyperlinks are also automatically created and the HTML anchors

can be exploited by other applications to display any schema within the specification.

Additionally, ZML supports the automatic expansion of horizontal schemas and standard

XML parsers can be used to read and validate ZML files.

While the straightforward transformation approach described above works for the

original version of ZML the more recent annotated syntax versions would require a genuine

parser. Tools that already support existing XML representations for Z offer a possible

transformation path. The current XML export fromCADiZ is very similar to the new

ZML annotated syntax [211]. Sun also reports that a LATEX to XML translator is either

under development or has been developed by the Formal Specification Research Group

at the National University of Singapore [193]. Given that SpecTrE has been effectively

implemented as a chain of tools thentex2zml could simply be replaced by another tool as

required. Additionally, SpecTrE can also accept existing ZML files as input which avoids

the need for translation. Once in ZML format, however, a context can be created using

spec2db.

5.3.2 Database and Context Creation

Thespec2db tool takes a ZML specification and creates a formal context which is stored

in a relational database. Given that ZML is XML-based then a generic XML parser can
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Figure 5.28: ER Diagram representing the database structure for storing the
object and attribute information extracted from the specifications.

be used to read the specification files rather than implementing a custom-built parser. The

Electric XML API [140] used to parse the transformation rules described in Section 5.3.1

above is also re-used inspec2db to parse ZML.

The structure of the database used to store details of the parsed specification consists of

three tables reflecting theG,M, I structure of the formal context. An Entity-Relationship

(ER) diagram representing the table structure is shown in Figure 5.28 using the notation of

Elmasri and Navathe [65].

While the correspondence between theobject and attribute entities with the setsG

andM is obvious, the incidence relationI is represented by the “has” relationship. In the

relational database model this relationship is also implemented as a table. In addition, note

that there are no participation constraints on the relationship corresponding to the incidence

relationI . This structure permits objects to be included in the context that have no attributes

and conversely, attributes that do not belong to any of the objects. In specification terms

this may be useful to explicitly represent the fact that a specification does not make use of

a particular mark-up element or operation. This functionality is further supported by the

“attribute” and “min attribute” files described in Section 5.3.4. The “attribute” file can be

used to exclude specific mark-up elements from the context while the “min attribute” file

can be used to include specific attributes even if they are not present in the specification.

Although this three table structure explicitly represents the object set, attribute set, and

incidence relation, ToscanaJ actually requires a single database table that more closely

resembles a crosstable. This structure is depicted in Figure 5.29.
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Figure 5.29: ER Diagram representing the single table context used by
ToscanaJ.

Representing a formal context as a single database table presents a number of problems

when encoding specification details. The first problem arises because the Z notation is

case-sensitive. In the three tableG,M, I database structure the object and attribute names

are both stored as string values which are also case-sensitive. However, in the single-table

structure used to create the CSX file the attribute names become column names within

a database table. Column names in databases adhering to the SQL-92 standard are not

case-sensitive, although there appears to be some variation depending upon the choice of

database management system and/or operating system platform.

The second problem arises because a number of quotation characters like ‘?’ and ‘!’

which are commonly used in Z are illegal in database column names. In most databases it is

possible to use “illegal” column names by specifying them within double quotes, however,

this feature also appears to vary with the choice of database. Reliably using attribute values

as database column names therefore requires an encoding scheme that preserves case as

well as any illegal characters. This is achieved withinspec2db by replacing any non-

lowercase alphabet character in an attribute name by a literal representation of its Unicode

value. For example, the uppercase letter ‘A’ is encoded as ‘u0041’, ‘Z’ as ‘u005a’, and

‘!’ as ‘u0021’. Using this scheme the attribute nameBirthdayBookwould appear in the

context table as the columnu0042irthdayu0042ook. The encoded names need only be

machine readable because the CSX file stores attribute labels separately from the definition

used to query the database for the details of a specific formal concept. The encoded names

are only used for interacting with the database and the original attribute names can still be
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Figure 5.30: ToscanaJ screenshot showing the standard “list object” view.
Note that the labels represent the databaseobject id numbers rather than an
object count.

<queries dropDefaults="false"> <listQuery name="Schema

Names" head=""> <column

name="Schema">object_name</column> </listQuery>

</queries>

Figure 5.31: This list-query produces the menu option to display schema
names shown in Figure 5.32.

displayed on the line diagrams.

A final point regarding the construction of the database and conceptual schema files

also concerns the structure represented by Figure 5.29. Given that the primary key from

the final database context table isobject id then the standard “list object” view in ToscanaJ

simply lists theobject id numbers rather than the schema names as shown in Figure 5.30. A

“schema name” option is added to the menu via the list query shown in Figure 5.31 which

is also stored in the CSX file. If this new option is selected the database is queried and

the object namevalues (the actual schema names) are displayed instead of theobject id

numbers. The resulting menu option is shown in Figure 5.32.
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Figure 5.32: ToscanaJ screenshot showing the “schema name” menu item.

In addition to parsing the specification and creating the database tables thespec2db

tool is also responsible for creating the conceptual schema file. Although this file is created

in the CSC format used by A it can be imported into either the Siena or Elba editors

to create the CSX file which is ultimately used by ToscanaJ. Siena and Elba can also be

used to create any predefined conceptual scales that a user may wish to apply.

While the transformation and context creation processes are automated, the conceptual

scales must currently be created manually before ToscanaJ can be used. Alternatively, a

number of standard scales based on Z language features could be set up and re-used across

projects while project specific scales can still be created as required.

Using standard lattice layouts and order embeddings it is also possible to automate

scale layout to a certain extent. Scale creation then simply becomes a task of choosing

the appropriate attributes. The choice of attributes could also be performed based on

a particular ZML tag-type or a naming convention. An example of an automatically

generated scale based on the schema input naming convention ‘?’ is shown in Figure 5.33.

Once the scales have been constructed, however, ToscanaJ can then be used to explore the

concept lattices representing the specification.
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Figure 5.33: An automatically generated scale based on schema inputs.

5.3.3 Browser Integration

ToscanaJ was chosen to provide visualisation in SpecTrE because it supports a number

of the required FCA abstractions including conceptual scaling, nested line diagrams

and zooming. Furthermore, ToscanaJ supports database connectivity and the Java-based

implementation means that the tool is platform independent. The source code is also freely

available so the tool could be modified as required, however, the extensible “view” interface

meant no hacking or re-compilation of ToscanaJ was necessary.

In addition to customisation via the<listQuery> tag described in the previous section,

ToscanaJ also allows custom object views to be specified within the conceptual schema file.

These views allow users to click on object labels in a line diagram and display additional

information about the objects. This view interface can be exploited to display any schema

within a Z specification by launching a browser with a URL that concatenates a reference

to the ZML version of the specification and the object name as an HTML anchor.

On the Windows platform a shell execute is available to open documents using the

default application based on the document’s extension type. While this technique can be

used to open a URL on the local filesystem like ‘C:\Temp\Demo\BirthdayBook.xml’

it cannot be used to open ‘C:\Temp\Demo\BirthdayBook.xml#AddBirthday’ because
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<views>

<objectView class="net.sourceforge.toscanaj.dbviewer.ProgramCallDatabaseViewer"

name="Goto spec...">

<parameter name="openDelimiter" value="%%%"/>

<parameter name="closeDelimiter" value="$$$"/>

<parameter name="commandLine"

value=’rundll32 url.dll,FileProtocolHandler

javascript:location.href="%%%object_url$$$"’/>

</objectView>

</views>

Figure 5.34: The Database Viewer code to implement ToscanaJ and browser
integration from within a “CSX” file. The object view enables the pop-up menu
shown in Figure 5.35 for displaying schemas within the browser.

the extension is not recognised. As a workaround for this problem the URL can be

encapsulated within some Javascript and the default browser will then be launched as the

default application. The Javascript simply opens the URL and the required<objectView>

mark-up is shown in Figure 5.34.

The “name” attribute in the<objectView> tag adds a popup-menu option in ToscanaJ

that can then be used to display the desired schema using the web-browser. A screenshot

of the menu is shown in Figure 5.35. The value of the ‘objecturl’ attribute between the

delimiting tags$$$ and%%% is retrieved from the database for this object and substituted in

the command line. The browser is then launched to display the appropriate schema which

is rendered automatically using ZML and XSL1.

The only side-effect of this approach is that it requires Javascript to be enabled on

the user’s browser which has an associated security risk on the Web at large. This

implementation is also platform dependent; however, both the Netscape and Mozilla

browsers on the Unix/Linux platform have a remote control facility that could be exploited

in a similar fashion [141].

1An example CSX file generated from theBirthdayBookspecification is available online:
http://www.kvocentral.org/software/spectre.html
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Figure 5.35: ToscanaJ screenshot showing the effect of a right mouse button
click on a schema name. Selecting“Goto spec...” from the pop-up menu will
launch a web-browser displaying this schema within the original specification.

5.3.4 GUI Front-end

Although SpecTrE is implemented via a series of independent tools, a GUI front-end is

provided to assist users in the transformation and context creation process as shown in

Figure 5.36. All of the available options can also be specified via a command line interface.

A “skinned” version of the SpecTrE front-end is also available as shown in Figure 5.37.

This is activated via the “-blofeld” command line option and in this mode the interface

also plays appropriate sound-samples in response to button click, startup, and exit events.

Via the GUI front-end a user can select a source specification written in either ZML

or LATEX. The database where the formal context will be stored must also be specified. In

addition the user can also optionally select two files which contain lists of attributes to be

included during the context creation process.

The “attribute” file provides a list of valid mark-up tags that are to be included in

the context if they are found while parsing the source specification. Via this mechanism

irrelevant mark-up tags can be ignored while different attribute lists could also be used to
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Figure 5.36: Screenshot of the SpecTrE GUI.

Figure 5.37: Screenshot of the SpecTrE interface in “Blofeld” mode.
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facilitate the parsing of different mark-ups. For example, the new ZML fully-annotated

syntax orCADiZ style XML could be supported.

The “min attribute” file contains a list of attributes that must be included in the context

even if they are not found in the specification. In some cases it can be useful to see which

attributes are not used in any schemas by specifically including them in the context.

A “create ‘.CSC’ ” checkbox at the lower left of the GUI indicates that in addition

to populating the database SpecTrE should also export a Conceptual Schema file. The

CSC2CSX conversion tool was originally used to convert the data into the XML format

used by ToscanaJ, however, both the Elba and Siena editors now support direct CSC import.

The “schemas only” checkbox is used to create contexts where both the object and

attribute sets only contain schema names. If this option is selected then all schema names

are included during parsing. Normally only those schemas involved in schema calculi

operations are included in the context. These contexts can be used to generate line diagrams

describing the relationships between schemas like those appearing in Figures 4.6 and 4.5.

5.4 Conclusion

This chapter has described the implementation of the prototype SpecTrE tool that embodies

the ideas described in Chapter 4. The chapter opened with a discussion of Z representation

issues and the ZML format was introduced. Section 5.2 then provided an overview of

a number of FCA tools including ToscanaJ before Section 5.3 described the modular

implementation of SpecTrE using ToscanaJ and ZML in conjunction with two custom tools:

tex2zml andspec2db.

ZML was chosen as the Z representation format for SpecTrE because it supports sharing

on the Web, automatic rendering in XSLT-enabled browsers, automatic hyperlinking and

schema expansion. ToscanaJ was used to visualise the line diagrams because as an open

source project the source code is readily available and it could be modified as required.

Ultimately, however, the extensible view interface facilitated the web-browser integration

without the need to modify or recompile any code. Furthermore, ToscanaJ supports

conceptual scaling, nested-line diagrams, zooming, database connectivity and it is also
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platform independent.

Knight, DeJong, Gibble and Nakano [119] proposed a framework to evaluate the

specification of a control system for a nuclear research reactor using three different formal

methods including Z. With regards to the usability of formal methods they concluded that:

The ability to locate relevant information is a vital part of the utility of a

specification. The ability to search, for example with regular expressions is

valuable, but not sufficient.

SpecTrE provides this utility via conceptual scaling, zooming, and the ability to

compose multiple scales into nested line diagrams. Knight et al. go on to state that:

The formal method should also provide structuring mechanisms to aid in

navigation since the specification document is likely to be large. In a natural

language document, the table of contents and index assist in the location of

information; many tools allow them to be generated automatically from the

text. Another useful capability seen in text editing is the use of hypertext

links to a related section or glossary entry. Formal methods must address the

usability of the resulting specification documents.

This chapter has described the implementation of a tool that can generate and

implement alternative document structuring and search mechanisms that can be generated

automatically from the specification. While it may be possible to view and read

specification properties directly from line diagrams without reference to the specification

document itself, SpecTrE also represents a powerful navigation tool that addresses the

usability of specification documents described above. Although part of this functionality

comes through the utility of ZML, the line diagrams embody different views or different

document structuring mechanisms while still retaining direct access to schemas via

hyperlinks.

The next chapter concludes the thesis and presents some possible directions for future

work.
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Chapter 6

Conclusion

This final chapter concludes the thesis. Section 6.1 summarises the development of the

thesis and the contributions made in each of the preceding chapters. Section 6.2 then

introduces some related work to visualise software structure that has many parallels with

the approach presented here. Finally, future directions and extensions to this work are

presented in Section 6.3.

6.1 Thesis Summary

Chapter 1 of the thesis introduced the motivation for the work described here, revealed the

overall structure of the thesis, and then presented the necessary background for both FCA

and the Z notation. The motivation for this work is threefold. First, the majority of FCA

applications in software engineering have focussed on late-phase software maintenance

and re-engineering tasks. In contrast the focus of this thesis is the application of FCA to a

number of early-phase activities within the software engineering life-cycle. While formal

methods can be applied to all phases of the software engineering life-cycle [142, 143] the

process of formal specification fits within the design phase.

The second motivation for this work relates to formal specification and in particular

to existing attempts to increase the usability of Z by incorporating alternate graphical

representations, most notably UML. As an alternative to this approach, the thesis described

the visualisation and navigation of Z specifications via line diagrams representing Formal

157



Concept Lattices.

Within the formal methods community, tool support is seen as another path to increase

the usability and thereby the adoption of formal methods like Z. The continued call for

formal methods tool support represents the third motivation for this work. In response to

this call the thesis described the implementation of a prototype tool developed by the author

for visualising and navigating Z specifications based on FCA.

In support of the claim that the majority of FCA applications in software engineering

have focussed on late-phase and software maintenance tasks, Chapter 2 presented

the results of a comprehensive literature survey. The survey included a number of

different views over the academic literature reporting the application of FCA in software

engineering. These views categorised the survey papers according to: target language;

application size; ISO12207 categorisation; author collaboration; and perceived impact

via citation closure. The survey found that the majority of papers report applications to

software maintenance and re-engineering tasks and that there was little work in early-phase

software engineering design using FCA.

While many of the views were specific to this literature a number of generic views were

presented as the basis for an FCA-based methodology for literature reviews in general.

The major contributions of Chapter 2 are: the first broad survey of the FCA in software

engineering literature; and a generic, FCA-based methodology for literature surveys.

In keeping with the first motivation outlined above, Chapters 3 and 4 then described

early-phase software engineering applications of FCA. Chapter 3 presented a case study in

the requirements engineering space comparing two class hierarchies that model aspects of

a mass-transit railway system. The first hierarchy was produced for an existing Object-

Z specification of the system while the second was derived using FCA. An informal

description of the railway system was treated as a set of use-cases and the approach outline

by Düwel was then used to identify class candidates.

While the resulting FCA structure was essentially the same as the existing hierarchy, the

differences highlighted artefacts that had been introduced into the original structure during

formal specification. The approach represents an informal form of object exploration and
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serves to demonstrates the value of FCA as both a discussion promotion and question-

answering tool. The formal application of object exploration represents an obvious

extension to this work that is discussed further in Section 6.3.3.

Chapter 4 presented an application within the design phase of the software engineering

life-cycle that also addresses the second motivation for this work: using alternate graphical

representations to increase the usability of Z. The chapter briefly discussed existing work to

increase the usability of Z by incorporating graphical notations, principally UML. Context

creation and specification parsing issues were then discussed and the abstractions afforded

by FCA were introduced. Conceptual scaling, nested line diagrams, zooming, animation

and folding were all illustrated using theBirthdayBookspecification as an example.

The major contribution of Chapter 4 is an FCA-based, alternative visual representation

for visualising specification properties. The representation exploited a number of

abstractions and the approach is amenable to partial automation with tool support.

The third motivation for this work is the continued call for tool support from the formal

methods community. In response to this call, Chapter 5 described the implementation of a

prototype tool for visualising and navigating Z specifications. The tool embodies the ideas

introduced in Chapter 4 and exploits a number of existing technologies.

The chapter discussed a number of approaches to representing Z and also provided

an overview of tool support for FCA. The implementation of a tool based on ZML and

ToscanaJ was then described. SpecTrE — a graphical user interface front end for the

specification transformation, parsing and context creation processes — was also introduced

and a number of specification browser implementation issues were discussed. The major

contribution of Chapter 5 is a prototype implementation of a platform independent, FCA-

based tool for visualising and navigating Z specifications.

The next section of this chapter discusses a related approach to visualise software

structure using FCA that parallels much of the work described in the thesis.
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6.2 Related Work

The ConceptualAnalysis of Software Structure (CASS) tool described by Cole and

Tilley [40] is an FCA-based tool for analysing the structure of Java classes. While it is not

directly related to formal specification the approach parallels much of the context creation

and visualisation work described in Chapter 4, the tool implementation in Chapter 5, and

some of the class-hierarchy work from Chapter 3.

Rather than only using Java source code as the input for analysis, CASS takes Java class

files and considers the software as an algebraic structure. This allows a user to abstract over

the syntax of the programming language and directly explore properties of interest within

the software structure.

The process of software design and implementation often contains many arbitrary

decisions — from the choice of method or variable names through to the structure of a class

hierarchy. Within so called “agile methods” (and eXtremeProgramming (XP) in particular)

regular refactoring activities are undertaken to revise the software structure [72, 12]. The

CASS tool seeks to support these kinds of development processes by providing insight into

the structure of the current design. Ideally, CASS would ultimately become a plug-in for

use as an analysis tool within an Integrated Development Environment (IDE) like IBM’s

Eclipse [60] for Java. An overview of the CASS architecture is shown in Figure 6.1.

Source code analysers and profilers are used to extract information about the software

which is stored and queried as a series ofinformation graphs. These information graphs

consist of triples of the form(subject, predicate, object), for example:

"java.util.List" is-a interface,

"java.util.List.isEmpty()" in "java.util.List".

"java.util.List.isEmpty()" is-a method.

These three triples assert that the classjava.util.List.isEmpty()is a method within the

interfacejava.util.List. A rule based system is then used to extend the Knowledge Base

(KB) with new relationships and artefacts. For example, rules describing transitivity can be

applied so that if a methodA is in a classB, and classB is in packageC, then the methodA

is also in the packageC.
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Figure 6.1: Architecture of the CASS tool.

Information graphs can also be used to define aspects of the software to be explored.

These graphs can be used to query the knowledge base and generate result sets which are

then visualised using concept lattices which are rendered by ToscanaJ. These hypotheses

or questions may then be investigated either by generating new lattices, perhaps displaying

new aspects of interest within the software structure, or by navigating back to the source

artefacts within the software or its documentation.

Since each concept lattice is generated from a query graph, a natural refinement

ordering allows general views to be elaborated and made more specific. Thus, the user

is able to progress from a general view to a more specific view, or vice versa. In addition,

two or more aspects of the software structure can be combined and visualised using nested

line diagrams.

The use of information graphs for storage, knowledge base enrichment, and querying

makes CASS a very flexible analysis tool. While CASS deals with software rather than

formal specifications, there are many obvious parallels with the work described in the

thesis. The parallels range from the overall aim to facilitate the exploration of the structure

of the software through to the ultimate use of ToscanaJ for viewing the resulting line

diagrams. The use of a CASS-like architecture for visualising Z specifications could create

161



a more flexible version of the SpecTrE tool and this idea is developed further in the next

section.

6.3 Future Work

The CASS methodology and implementation architecture described above represents a

possible extension to the specification navigation and visualisation work described in the

thesis. However, there are also a number of other possible directions and extensions for

this work.

6.3.1 Conceptual Analysis of Specification Structure

To extract triples from Java class files CASS currently uses IBM’s CFParse class file

analyser library [4]. The adaptation of CASS to create a tool for visualising Z specifications

would require an equivalent mechanism to extract triples from Z specifications.

If we assume ZML input then it may be possible to exploit some of the work coming

out of the CZT initiative [135] or build a simple triple generator based on a custom ZML

or generic XML parser. The existing transformation approach described in Section 5.3.1

could still be used as required to transform source specifications in Oz style LATEX mark-up

into ZML.

In terms of the existing tool architecture presented in Chapter 5 a triple extractor

and knowledge base would replace the existing parsing, context and database creation

processes. ToscanaJ is already used to visualise the lattice diagrams produced by CASS

and the existing browser integration technique could be adapted provided the anchor URLs

are also stored in the knowledge base.

Given that Java is an object-oriented language then this approach should also facilitate

the visualisation of Object-Z. Information graphs could be used to exploit richer

relationships within the specifications and may also facilitate some level of schema

expansion within the knowledge base.
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6.3.2 Usability Testing

While Chapter 4 discussed how FCA could be used to visualise Z specifications and

Chapter 5 described a tool implementing these ideas no claims were made about the

usability of the tool. To make such claims for the SpecTrE tool described here would

require usability testing and a comparison with existing tools such as the ORA Z Browser

described in Section 5.1.1 andCADiZ.

One approach to usability testing is to introduce the tool and evaluate its performance as

part of an introductory Z or software engineering course at university. This is the approach

taken by Richards et al. who conducted a survey using 201 second-year Analysis and

Design students to evaluate their vocabulary guidelines and the line diagrams produced

by their RECOCASE tool [158, 159, 157, 156]. Finney [68] and Finney, Fenton and

Fedorec [69] also describe Z comprehensibility studies conducted with both undergraduate

and postgraduate students while Mikušiak, Vojtek, Hasaralejko and Hanzelová used

postgraduates and staff to evaluate their Z Browser [137].

University students are an obvious source of test subjects for academics, however, the

results obtained do not necessarily reflect the experiences of real world users. Evaluations

of this type may continue to perpetuate the view of Z tools as either tools for academics

or research prototypes that fall short of the robust, industrial strength tools that the formal

methods community require [33, 209].

Independent of any usability testing, the approach described here should be applied

to other well known specifications such as the “library problem” [228, 232]. This would

facilitate comparison with other approaches such as the UML-based visualisation work of

Kim and Carrington [117] which uses this example.

6.3.3 Extending the Use-case Approach

In Section 3.5object explorationwas presented as a formal mechanism for both enriching

the context based upon implications and as a way of defining an end point for the iterative

process. Chapter 3, however, did not formally apply object exploration to the mass-transit

example and it was left as anad hocprocess relying on the insight and intuition of the
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designers to decide when to stop iterating. It would be interesting to formally apply

object exploration to this example and contrast the resulting structure against both the

original Object-Z hierarchy and the informal FCA-hierarchy presented in the chapter. The

scalability issues should not present a significant problem for an example of this size and

the ConImp, ConExp, or IMPEX tools could be used to support the process.

The possible automation of the initial noun extraction from the use-cases was also

briefly mentioned in Section 3.3. Again, it would be an interesting exercise to compare both

the Object-Z and FCA-hierarchies as presented in the chapter against a hierarchy where the

initial noun extraction was performed automatically using either a controlled vocabulary or

a suitable ontology of terms.

6.3.4 A Return to the Lattice of Specifications

The final extension proposed here seeks to exploit the semantics of Z rather than just the

syntax. This could be achieved by representing some of the richer relationships contained

in Z specifications as formal contexts. In what could be seen as a return to the earliest work

of Mili et al. [138] introduced in Chapter 1 the idea of specification refinement is used to

illustrate three possible approaches.

Specification Refinement

The Z notation can be used to provide specifications at different levels of abstraction.

For example, an initial high-level specification may simply be concerned with inputs and

outputs. This can later be refined to include error checking as seen in the development of

theBirthdayBookspecification with the introduction of the “robust” schemas. Using direct

refinement a sequence of specifications can move from an initial abstract representation to

a concrete one that can then be implemented. Each refinement includes more details and

an overview of the technique based on Spivey’sBirthdayBookis presented here [184].

TheBirthdayBook1 schema shown below represents a refinement of theBirthdayBook

schema with a concrete state space. The state space is modelled using two arrays:names

which is used for storing the names, anddateswhich is used for storing the birthdates.

The arrays are modelled by functions which map from the set of positive integersN1 to the
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NAME and DATE data-types. In addition a variable calledhwmis introduced to represent

the “high water mark” — an index representing how much of the arrays are in use:

BirthdayBook1
names: N1→ NAME
dates: N1→ DATE
hwm: N

∀ i, j : 1. . hwm• i , j ⇒ names(i) , names(j)

The predicate part ofBirthdayBook1 simply checks that there are no repeated names

contained in thenamesarray. The relationship between the abstract state space defined by

BirthdayBookand the new concrete state space inBirthdayBook1 can now be described:

Abs
BirthdayBook
BirthdayBook1

known= {i : 1. . hwm• names(i)}
∀ i : 1. . hwm• birthday(names(i)) = dates(i)

Having defined a concrete state space and the relationship between the abstract and

concrete state spaces in the schemaAbs, the original operations can now be refined. For

example, theAddBirthday1 schema represents an initial array-based implementation of the

AddBirthdayschema:

AddBirthday1
∆BirthdayBook1
name? : NAME
date? : DATE

∀ i : 1. . hwm• name?, names(i)
hwm′ = hwm+ 1
names′ = names⊕ {hwm′ → name?}
dates′ = dates⊕ {hwm′ → date?}

Given that this refinement now only contains notation with direct counterparts in a
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programming language an actual implementation of theAddBirthdayoperation could be

provided. While this example demonstrates only a single level of refinement there could

be a number of successive refinements with corresponding proofs to show that each of the

refinement steps are correct.

The existing visualisations described in Section 4.3 could provide significant insight

into the structure of this refined version of the Birthday Book specification. For example,

a line diagram representing schema composition would reveal two parallel structures with

similar schema names based on the inclusion of either theBirthdayBookor BirthdayBook1

state space schemas. The effect would be similar to the structure revealed in Figure 4.6

where the use of theSuccessschema by the “robust” operations can clearly be seen. The

application of scales containing either the state space schemas or input/output names would

also reveal the parallel operation structures in the refined specification.

Provided naming conventions are used consistently within a specification, the patterns

within schema names could also be used to provide different views over the structure of

Z specifications. Example patterns from theBirthddayBookspecification could include

the sets of names{RAddBirthday,RFindBirthday, RRemind}, {AddBirthday, RAddBirthday,

AddBirthday1} and {AddBirthday1, FindBirthday1, Remind1}. In the CASS-based

specification tool described in Section 6.3.1 these patterns could be specified as a series

of information graphs.

Two alternative approaches that could be used to represent relationships like schema

refinement within specifications aremulticontextsandpower context families.

Multicontexts

The use of multicontexts [226] as a mechanism for representing richer relationship

structures in specifications is another possible direction for this work. A formal

multicontext consists of a number of sets and a number of binary relations that are

represented as a network of formal contexts. With respect to the visualisation of Z

specifications, a multicontext could be used to represent refinement where different

contexts correspond to the specification at different levels of refinement. This approach

could potentially form the basis for a tool that can not only provide abstractions but also
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(InitBirthdayBook, BirthdayBook) ×

(AddBirthday, BirthdayBook) × ×

(FindBirthday, BirthdayBook) × ×

(Remind, BirthdayBook) × ×

(AlreadyKnown, BirthdayBook) × ×

(NotKnown, BirthdayBook) × ×

(RAddBirthday, BirthdayBook) × ×

(RAddBirthday, AddBirthday) × ×

(RAddBirthday, Success) × ×

(RAddBirthday, AlreadyKnown) × ×

(RFindBirthday, BirthdayBook) × ×

(RFindBirthday, FindBirthday) × ×

(RFindBirthday, Success) × ×

(RFindBirthday, NotKnown) × ×

(RRemind, BirthdayBook) × ×

(RRemind, Remind) × ×

(RRemind, Success) × ×

Table 6.1: A formal context representing schema composition inK2. This
context provides an alternate representation of the context in Table 4.6 using
binary relationships between schemas.

the ability to relate views at different levels of abstraction [80].

Power Context Families

Power Context Families can also be used to represent the relationships between objects

in formal contexts [46, 90, 89]. Formally, a power context family is a sequence~K :=

(K0,K1,K2, ...) of formal contextsKk := (Gk,Mk, Ik) with Gk ⊆ (G0)k for k = 1,2, ....

The formal concepts ofKk with k = 1,2, ... are calledrelation conceptsbecause they

represent thek-ary relations on the object setG0 by their extents. For example, whileK0

represents the objects themselves,K1 represents unary relations between objects,K2 binary

relationships, and so on.

Typically, only K0 and K2 are used and an example usingK2 to represent binary

relationships between schemas in theBirthdayBookspecification is presented in Table 6.1.

This context presents an alternate representation of the information in Table 4.6 that makes

the composition type explicit.

The same approach could also be used to represent refinement between pairs of

specifications and the refinements described at the start of this section are shown in
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(BirthdayBook, BirthdayBook1) ×

(AddBirthday, AddBirthday1) ×

(FindBirthday, FindBirthday1) ×

(Remind, Remind1) ×

Table 6.2: A formal context representing schema refinement inK2.

Table 6.2. Power context families represent another mechanism that could be further

explored to exploit the relationships inherent in Z specifications.
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Appendix A

BirthdayBook Specification

This appendix presents each of the schema and type declarations from Spivey’s

BirthdayBookspecification [184] in its rendered form along with the corresponding Oz

style LATEX [118] and ZML mark-ups. The ZML shown here is consistent with the original

version reported by Sun et al. [195]. A more recent version of ZML is discussed in

Section 5.1.3 of Chapter 5.

PostScript/PDF:

[NAME,DATE]

Oz style LATEX:

\begin{zed}

[NAME, DATE]

\end{zed}

ZML:

<tydef align="left">

[<name>DATE</name>,<name>NAME</name>]

</tydef>
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PostScript/PDF:

REPORT ::= ok | already known| not known

Oz style LATEX:

\begin{zed}

REPORT \ddef ok \bbar already\_known \bbar not\_known

\end{zed}

ZML:

<tydef align="left">

<name>REPORT</name> &defs; ok &bbar; already_known &bbar;

not_known

</tydef>
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PostScript/PDF:

BirthdayBook
known: P NAME
birthday : NAME 7→ DATE

known= dombirthday

Oz style LATEX:

\begin{schema}{BirthdayBook}

known: \power NAME \\

birthday: NAME \pfun DATE

\ST

known = \dom birthday

\end{schema}

ZML:

<schemadef layout="simpl" align="left">

<name>BirthdayBook</name>

<decl>

<name>known</name>

<dtype>

&pset; <type>NAME</type>

</dtype>

</decl>

<decl>

<name>birthday</name>

<dtype>

<type>NAME</type> &pfun; <type>DATE</type>

</dtype>

</decl>

<st/>

<predicate>known = &dom; birthday</predicate>

</schemadef>
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PostScript/PDF:

InitBirthdayBook
BirthdayBook

known= ∅

Oz style LATEX:

\begin{schema}{InitBirthdayBook}

BirthdayBook \\

\ST

known = \emptyset

\end{schema}

ZML:

<schemadef layout="simpl" align="left">

<name>InitBirthdayBook</name>

<incl>

<type>BirthdayBook</type>

</incl>BirthdayBook

<st/>

<predicate>known = &emptyset;</predicate>

</schemadef>
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PostScript/PDF:

AddBirthday
∆BirthdayBook
name? : NAME
date? : DATE

name? < known
birthday′ = birthday∪ {name? 7→ date?}

Oz style LATEX:

\begin{schema}{AddBirthday}

\Delta BirthdayBook \\

name? : NAME \\

date? : DATE

\ST

name? \nem known \\

birthday’ = birthday \union \{name? \map date?\}

\end{schema}

ZML:

<schemadef layout="simpl" align="left">

<name>AddBirthday</name>

<del>

<type>BirthdayBook</type>

</del>

<decl>

<name>name?</name>

<dtype>

<type>NAME</type>

</dtype>

</decl>

<decl>

<name>date?</name>

<dtype>

<type>DATE</type>

</dtype>

</decl>

<st/>

<predicate>name? &nem; known</predicate>

<predicate>birthday’ = birthday &uni; {name? &map; date?}</predicate>

</schemadef>
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PostScript/PDF:

FindBirthday
ΞBirthdayBook
name? : NAME
date! : DATE

name? ∈ known
date! = birthday(name?)

Oz style LATEX:

\begin{schema}{FindBirthday}

\Xi BirthdayBook \\

name? : NAME \\

date! : DATE

\ST

name? \mem known \\

date! = birthday(name?)

\end{schema}

ZML:

<schemadef layout="simpl" align="left">

<name>FindBirthday</name>

<xi>

<type>BirthdayBook</type>

</xi>

<decl>

<name>name?</name>

<dtype>

<type>NAME</type>

</dtype>

</decl>

<decl>

<name>date!</name>

<dtype>

<type>DATE</type>

</dtype>

</decl>

<st/>

<predicate>name? &mem; known</predicate>

<predicate>date! = birthday(name?)</predicate>

</schemadef>
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PostScript/PDF:

Remind
ΞBirthdayBook
today? : DATE
cards! : P NAME

cards! = {n : known| birthday(n) = today?}

Oz style LATEX:

\begin{schema}{Remind}

\Xi BirthdayBook \\

today? : DATE \\

cards! : \power NAME

\ST

cards! = \{ n : known \cbar birthday(n) = today? \}

\end{schema}

ZML:

<schemadef layout="simpl" align="left">

<name>Remind</name>

<xi>

<type>BirthdayBook</type>

</xi>

<decl>

<name>today?</name>

<dtype>

<type>DATE</type>

</dtype>

</decl>

<decl>

<name>cards!</name>

<dtype>

&pset; <type>NAME</type>

</dtype>

</decl>

<st/>

<predicate>cards! = {n : known &bbar; birthday(n) = today?}</predicate>

</schemadef>
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PostScript/PDF:

Success
result! : REPORT

result! = ok

Oz style LATEX:

\begin{schema}{Success}

result! : REPORT

\ST

result! = ok

\end{schema}

ZML:

<schemadef layout="simpl" align="left">

<name>Success</name>

<decl>

<name>result!</name>

<dtype>

<type>REPORT</type>

</dtype>

</decl>

<st/>

<predicate>result! = ok<predicate>

</schemadef>
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PostScript/PDF:

AlreadyKnown
ΞBirthdayBook
name? : NAME
result! : REPORT

name? ∈ known
result! = already known

Oz style LATEX:

\begin{schema}{AlreadyKnown}

\Xi BirthdayBook \\

name? : NAME \\

result! : REPORT

\ST

name? \mem known \\

result! = already\_known

\end{schema}

ZML:

<schemadef layout="simpl" align="left">

<name>AlreadyKnown</name>

<xi>

<type>BirthdayBook</type>

</xi>

<decl>

<name>name?</name>

<dtype>

<type>NAME</type>

</dtype>

</decl>

<decl>

<name>result!</name>

<dtype>

<type>REPORT</type>

</dtype>

</decl>

<st/>

<predicate>name? &mem; known</predicate>

<predicate>result! = already_known</predicate>

</schemadef>
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PostScript/PDF:

NotKnown
ΞBirthdayBook
name? : NAME
result! : REPORT

name? < known
result! = not known

Oz style LATEX:

\begin{schema}{NotKnown}

\Xi BirthdayBook \\

name? : NAME \\

result! : REPORT

\ST

name? \nem known \\

result! = not\_known

\end{schema}

ZML:

<schemadef layout="simpl" align="left">

<name>NotKnown</name>

<xi>

<type>BirthdayBook</type>

</xi>

<decl>

<name>name?</name>

<dtype>

<type>NAME</type>

</dtype>

</decl>

<decl>

<name>result!</name>

<dtype>

<type>REPORT</type>

</dtype>

</decl>

<st/>

<predicate>name? &nem; known</predicate>

<predicate>result! = not_known</predicate>

</schemadef>
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PostScript/PDF:

RAddBirthdaŷ= (AddBirthday∧ Success) ∨ AlreadyKnown

Oz style LATEX:

\begin{zed}

RAddBirthday \sdef (AddBirthday \land Success)

\lor AlreadyKnown

\end{zed}

ZML:

<schemadef layout="calc" align="left">

<name>RAddBirthday</name>

<predcalc op="or">

<predcalc op="and">

<type>AddBirthday</type>

<type>Success</type>

</predcalc>

<type>AlreadyKnown</type>

</predcalc>&lor; AlreadyKnown

</schemadef>
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PostScript/PDF:

RFindBirthdaŷ= (FindBirthday∧ Success) ∨ NotKnown

Oz style LATEX:

\begin{zed}

RFindBirthday \sdef (FindBirthday \land Success) \lor NotKnown

\end{zed}

ZML:

<schemadef layout="calc" align="left">

<name>RFindBirthday</name>

<predcalc op="or">

<predcalc op="and">

<type>FindBirthday</type>

<type>Success</type>

</predcalc>

<type>NotKnown</type>

</predcalc>

</schemadef>

180



PostScript/PDF:

RRemind̂= Remind∧ Success

Oz style LATEX:

\begin{zed}

RRemind \sdef Remind \land Success

\end{zed}

ZML:

<schemadef layout="calc" align="left">

<name>RRemind</name>

<predcalc op="and">

<type>Remind</type>

<type>Success</type>

</predcalc>

</schemadef>
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LATEX and ZML documents require opening and closing mark-up which are included here
for completeness.

PostScript/PDF:

Not applicable.

Oz style LATEX:

\documentclass[a4paper]{oz2e}

\begin{document}

...

\end{document}

ZML:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl"

href="http://nt-appn.comp.nus.edu.sg/fm/zml/objectzed.xsl"?>

<!DOCTYPE unicode SYSTEM

"http://nt-appn.comp.nus.edu.sg/fm/zml/unicode.dtd">

<objectZnotation xmlns="x-schema:objectZschema.xml"

xmlns:HTML="http://www.w3.org/Profiles/XHTML-transitional">

...

</objectZnotation>
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TheRemoveBirthdayschema shown here and theModifyBirthdayschema on the following
page are extensions to the original BrithdayBook specification. They are discussed in
Section 4.3.3 of the thesis.

PostScript/PDF:

RemoveBirthday
∆BirthdayBook
name? : NAME

name? ∈ known
birthday′ = name?−C birthday

Oz style LATEX:

\begin{schema}{RemoveBirthday}

\Delta BirthdayBook \\

name? : NAME \\

\ST

name? \mem known \\

birthday’ = {name?} \dsub birthday

\end{schema}

ZML:

<schemadef layout="simpl" align="left">

<name>RemoveBirthday</name>

<del>

<type>BirthdayBook</type>

</del>

<decl>

<name>name?</name>

<dtype>

<type>NAME</type>

</dtype>

</decl>

<st/>

<predicate>name? &mem; known</predicate>

<predicate>birthday’ = {name?} &dsub; birthday</predicate>

</schemadef>
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PostScript/PDF:

ModifyBirthday=̂ RemoveBirthdayo9 AddBirthday

Oz style LATEX:

\begin{zed}

ModifyBirthday \sdef RemoveBirthday \zcmp AddBirthday

\end{zed}

ZML:

<schemadef layout="calc" align="left">

<name>ModifyBirthday</name>

<predcalc op="com">

<type>RemoveBirthday</type>

<type>AddBirthday</type>

</predcalc>

</schemadef>
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