FORMAL CONCEPT ANALYSIS APPLICATIONS TO
REQUIREMENTS ENGINEERING AND DESIGN

Thomas Tilley
B.Sc.(Maths & Comp. Sc.), B.Info.Tech.(Hons)

%%LV

(_AC

THE UNIVERSITY
OF QUEENSLAND

SCHOOL OF INFORMATION TECHNOLOGY AND
ELECTRICAL ENGINEERING

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR
THE DEGREE OF DocToR OF PHILOSOPHY.

November, 2003

| declare that the work presented in this thesis is, to the best of my knowledge and belief,
original and my own work, except as acknowledged in the text, and that the material has

not been submitted, either in whole or in part, for a degree at this or any other university.

Thomas Tilley, B.Sc.(Maths & Comp. Sc.), B.Info.Tech.(Hons)

Gold Coast, November 2003.

Abstract

Currently, the bulk of applications of Formal Concept Analysis (FCA) in software
engineering have focussed on software maintenance and re-engineering. In this thesis we
broaden the approach by applying FCA to a number of early-phase activities within the
software engineering life-cycle.

With respect to the requirements engineering phase, a case study is presented comparing
two class hierarchies that model aspects of a mass-transit railway ticketing system. The
first hierarchy was produced for an existing Object-Z specification of the system while
the second was derived using FCA. Contrasting the two hierarchies revealed that they
were essentially the same, however, thedences highlighted specification artefacts in
the existing hierarchy.

With respect to the design phase, the thesis discusses the use of FCA for the navigation
and visualisation of Formal Specifications written in Z. In response to the continued call for
formal methods tool support, we implement and explore a prototype specification browser
that exploits the abstractionfarded by FCA.

The research hypothesis is an integrated architecture for navigating formal
specifications using FCA. This architecture is realised using ZML and ToscanaJ to produce
a practical research tool. The thesis also includes the first broad survey of FCA in the
domain of software engineering and an FCA-based methodology for surveying academic

literature in general.

Acknowledgments

First, my sincere thanks to Peter Eklund who has always been very much the father figure to
everyone in KVO — ever supportive and fiercely protective. | am grateful for his guidance,
inspiration and the opportunities he has made possible for me. | am also indebted to Roger
Duke for his encouragement, and guidance during the final years of my candidature. Roger
always knew when to use the reassuring “that sounds typical for a PhD student” line to
greatest ffect.

| would like to express my gratitude to my colleagues in the KVO Lab: Richard Cole
for many doorway discussions on Software Engineering, FCA and life in general; Nataliya
Roberts for driving or riding shotgun during many bleary-eyed trips between UQ and the
Gold Coast; and Herr Peter Becker for being the ultimate resource and knowing quite a lot
about everything.

This work was supported by an Australian Postgraduate Award (APA) Scholarship and
| am grateful to the Distributed Systems Technology Centre (DSTC) CRC for additional
scholarship support, part-time employment and computer hardware.

| would also like to thank Bastian Wormuth for his translation of Andelfinger’s thesis;
Dr Peter Bruza as my DSTC supervisor; the UQ noodle bar who made the weekly ritual
of “Noodle Thursday” a delicious reality; and my parents who always encouraged my
scientific pursuits despite the potential risks to me, my friends and the house.

Finally, my deepest thanks to God for His sustaining grace; my loving wife Ann who
always supported and believed in me while patiently enduring many lonely nights and
delayed submission dates; and my children, Emily and Thomas who can now have their

turn on the computer after waiting for four and a half years.

Preface

During my Honours year in 1998 | implemented a remote graphical user interface
framework for a spatial database management system using Java’s Remote Method
Invocation (RMI) technology. The initial stages of the project required an
exploration of client-server communication techniques ranging from low-level socket-
based implementations through to technologies like RMI and CORBA (Common Object
Request Broker Architecture). As a result | developed a taste for middleware that continued
into 1999 when | spent 5 months working on software for a distributed meeting system at

Boeing Australia before commencing my PhD.

As | searched for a topic at the start of my candidature, Peter Eklund proposed the
exploration of distributed knowledge management with a focus on middleware — an
idea that would combine my previous work in distributed systems with the knowledge
management aims of our research group. His suggestion became the focus of my research
until later that year when Rudolf Wille visited Australia. During his visit Rudolf gave
a lecture on Barwise and Seligman’s “logic of distributed systems” and illustrated the
principle of information flow using a simple circuit with two lightbulbs. The states
of the system could be represented in a crosstable which is then amenable to Formal
Concept Analysis (FCA). In true cartoon fashion the lightbulb illustration gave me an
idea. | envisaged a tool where a communication protocol for a distributed system could
be specified as a (conceivably quite large) crosstable and the logic verified using Barwise
and Seligman’s approach. A user could then specify how they would like the protocol
implemented — RMI, CORBA, D-COM (Microsoft’s Distributed Common Object Model),

or sockets — and the desired software artefacts (interfaces, stubs, skeletons, data-types,

\Y

etc.). The tool would then automatically generate the required code or sub-system to
implement the protocol.

My research now had two threads to be developed in parallel until they merged
at some point or until one of them petered out. The first thread was distributed
knowledge management and the second, the specification and generation of communication
protocols. The protocol generation thread required the investigation of any existing
protocol specification techniques which led me to the Open Systems Interconnection (OSI)
Formal Description Techniques (FDTs) — LOTOS, Estelle, SDL — and in turn to the
world of Formal Methods. While the formal methods literature promised more reliable
software the ideas and methodologies had not been widely adopted. Part of the problem was
perceived as a lack of tool support that could make formal methods “easier” to use. There
was a call for robust tools thaffered abstraction and were more intuitive, user-friendly and
easy to learn than currently available tools or research prototypes. | felt that each of these
requirements could be at least partially addressed by FCA and so | abandoned the pursuit of
distributed knowledge management. The focus of my thesis became an exploration of the
application of FCA to increase the usability of Formal Methods and formal specification in
particular.

Although | did not yet have a clear idea of how to create concept lattices from
formal specifications there was some existing work that described the relationship between
Conceptual Graphs and FCA. | planned to exploit this work by transforming a formal
specification into a series of conceptual graphs and then applying FCA. While | ultimately
chose a dferent implementation route a similar method is now being used successfully
by Richard Cole to analyse Java class libraries using FCA. Richard had also suggested a
thesis topic back in 1999 — using FCA for software visualisation. At that time | was only
aware of Snelting’s work but was surprised, as my literature survey unfolded, at the number
of papers describing FCA applications in software engineering. As a result the focus of my
thesis has widened to incorporate early-phase software engineering applications for FCA
of which formal specification is now just a part. Here then is the result: “the application of

Formal Concept Analysis to requirements engineering and design”.

Vi

Contents

Abstract

Acknowledgments

Preface

1 Introduction
1.1 Background
1.2 Motivation
1.3 Thesis Structure
1.4 Formal Methods and FCA

1.5 Formal Concept Analysis

151
1.5.2
1.5.3
1.5.4
1.5.5
1.5.6
1.5.7

1.6 Formal Specification in Z

16.1
1.6.2

FormalContext
Formal Concept Lattice.
LineDiagram

Conceptual Scaling
Nested Line Diagrams
OrderEmbedding
Attribute Exploration

Schema Composition

Object-Z

2 A Survey of FCA Support for Software Engineering

2.1 Understanding Software Engineering 29
2.1.1 1S0O12207 Software Engineering Standard 31
2.1.2 Software Maintenance 33
2.2 FCAin Software Engineering 33
2.2.1 1S012207 Categorisation 34
2.2.2 Target ApplicationLanguage 36
2.2.3 Reported ApplicationSize 37
2.3 Support for Late-phase Activities L oo 40
2.3.1 Analysis of Software Configurations 43
2.3.2 Modularisation of Legacy Code, 44
2.3.3 Transforming Class Hierarchies 45
2.4 Support for Early-phase Activities 47
2.4.1 Requirements Analysis Lo 48
24.2 Use-case Analysis 48
2.4.3 Software ComponentRetrieval 49
25 SummaryofResults. 51
2.6 FCAasaliterature SurveyTool 51
2.6.1 Author Collaboration 52
2.6.2 CitationPatterns 54
Computing the CitationClosure 56
The Researchindex Digital Library (CiteSeer) 58
2.7 Comparing Paper Impact via CitationCount 61
2.8 Conclusion 64

Class Hierarchy Identification from Use-case Descriptions
3.1 Motivation L 66
3.2 From an informal description to a first concept lattice 68
3.3 lteratingthe FCAsSteps 71
3.4 Comparing thetwo approaches e

viii

29

66

3.5 ObjectExploration 82

3.6 Conclusion 82
Formal Specification Navigation and Visualisation 84

4.1 \Visualising Z Specifications 85

4.2 From a Specificationtoa Formal Context 86

4.3 Abstractionin FCA 89

431 Scaling 91

4.3.2 Visualising Schema Composition 94

4.3.3 NestedLineDiagrams 96

Schema Composition Revisited 99

434 Z0oOMING o e 101

4.3.5 AnimationandFolding 104

4.4 Conclusion 105
5 Specification Browser Implementation 107

51 RepresentingZ 107

511 BIXZStyles. 108

ZBrowser 109

51.2 ZinASCIl e 110

ZSL . 111

513 ZontheWeb 112

Applet-based Approaches 113

MathML 114

ZML . . 115

Other XML-based Z Representations 121

52 FCATOOIS. 122

5.21 GLAD . . . e 122

522 Conlmp 124

5.2.3 AvacoNnpAa@nNd TOSCANA 126

5.24 Toscanald 126
525 Cernato 130
526 COnNEXp e 131
52.7 IMPEX e 132
528 Galicia 132
529 GenericToolsSummary 133
5.2.10 Application SpecificTools 139
Monolithic Approaches 140
Modular Approaches 141
5.3 Specification Transformation Engine (SpecTrE) 143
5.3.1 Specification Transformation 145
5.3.2 Database and ContextCreation. 146
5.3.3 BrowseriIntegration. 151
534 GUIFront-end 153
54 Conclusion 155

Conclusion 157
6.1 ThesisSummary 157
6.2 RelatedWork 160
6.3 FutureWork 162
6.3.1 Conceptual Analysis of Specification Structure 162
6.3.2 UsabilityTesting 163
6.3.3 Extending the Use-case Approach 163
6.3.4 A Return to the Lattice of Specifications 164
Specification Refinement 164
Multicontexts 166
Power Context Families 167

A BirthdayBook Specification 169

List of Figures

11

1.2
1.3

1.4

15

1.6

1.7

1.8

1.9

2.1

2.2

2.3

2.4

Cartoon from the “Formal Methods Humour” web-page [95] that reflects
on the adoption of formalmethods. 4
The formal concept lattice corresponding to the planet context in Table 14.
The formal concept lattice corresponding to Table 1.4 (a sub-context of
Table 1.1 for the size attributesnall, mediunandlarge). 17
The formal concept lattice for a sub-context of Table 1.1 for the attribute
setM = {near, far, moor(s),namoon. 18

Nested line diagram showing the scale from Figure 1.3 nested inside

Figure 1.4. e 19
The lattice shown right is the result of arder embedding The initial

lattice shown left is sometimes called a “reduced line diagram”.20
A black box specification of thélreadyKnowroperation. 23
Object-Z class for ageneric FIFOqueue. 27
Object-Z class diagram showing features ofheueclass. 28
The classic waterfall life-cycle model. 30

The Formal Concept Lattice corresponding to the context in Table 2.1. The
objects are the 47 papers included in the survey while the attributes are the
activities defined in the ISO12207 standard. 36
Formal Concept lattice based on the context in Table 2.2 showing reported
application by language. 39
An Inter-ordinal scale based on the context in Table 2.2 using the maximum

KLOC across all programming languages for each paper. 40

Xi

2.5

2.6

2.7

2.8

2.9

3.1

3.2

3.3

3.4

3.5

3.6

The I1ISO12207 categorisation diagram from Figure 2.2 showing the paper

Lattice showing collaboration between authors within the set of survey
papers. Note that only papers where the authors have worked Wesheatit

co-authorsappear. e 52

Image produced by Snelting’s KABA tool showing
horizontal decompositions in Java code. This image appears as Figure 8
in Snelting00softwarfl77]. 54

Formal concept lattice showing transitive closure of citations within the set

of survey papers. e e 55
Algorithm to compute the citation closure within the set of survey paper&9

Concept lattice of the formal context abstracted from the cross table in
Table 3.1. 70

Concept lattice of the formal context abstracted from the cross table in
Table 3.2. Observe thaime has been introduced artgpe of tickethow

also applies to the three ticket buying use-cases. 72

Concept lattice of the formal context abstracted from the cross table in
Table 3.3. Note thapassengemlnd networknow also apply to théuy

SEASONUSE-CASE. v v v o e e e e e e e 74

Concept lattice of the formal context abstracted from the cross table in

Table 3.4. Note thaimenow applies to all three of the ticket buying use-

Concept lattice of the formal context abstracted from the cross table in
Table 3.5. Note thafare andstationnow apply to both théuy singleand

buy multiuse-cases. 78

Object-Z class diagram for the mass transit railway system. This diagram

appears as Figure 9.8 in the original case study [52]. 79

Xii

3.7 The Formal Concept lattice from Figure 3.5 with the ticket class hierarchy

shown in bold. The nodes labelled “TripTicket” and “Ticket” correspond

respectively with th@ripTicketandTicketclass unions in Figure 3.6. . . . 80
3.8 Initial package structure basedon Figure3.4. 81
4.1 BTX mark-up for theSuccesschemainOzstyle. 87

4.2 Module structure of an aerodynamics system written in FORTRAN.
Despite the complexity of the diagram the concept lattice was still useful as

a quality metric. This image appears as Figure Srelting00softwargl77]. 90
4.3 Line diagram of the concept lattice corresponding to the context in Table@34.
4.4 Line diagram of the concept lattice corresponding to the context in Table@#5.
4.5 Line diagram based on Table 4.6 showing composition. 95

4.6 Line diagram of the concept lattice corresponding to the context in

Table 4.7 showing composition relationships between schemas. 97

4.7 Line diagram from Figure 4.6 highlighting the ideal and filter for the
“RAddBirthday” concept. 97

4.8 Nested line diagram showing the context from Table 4.4 nested inside the
contextfromTable4.5. 98

4.9 Nested line diagram showing the context from Table 4.5 nested inside the
contextfromTable4.4. 99

4.10 Nested Line diagram of the extend&idhdayBookspecification. The two

scales are data-type and operation-type sub-contexts from Table 4.8. 1Q0.

4.11 Line diagram showing schema composition within the extended version of

theBirthdayBookspecification. 102

4.12 Line diagram showing schema composition in the exteBiitkddayBook

specification with schema “self-references” included. 103
4.13 Zoomed line diagram showing tBate concept from Figure 4.9. 103
4.14 Three screenshots illustrating animation in Cernato. 105
5.1 Oz styleAIpX mark-up for theAddBirthdayschema. 108

Xiii

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

Overview of the rendering process from&K source document to a final

PostScriptor PDFdocument. 109
Traf mark-up for theAddBirthdayschema. 109
Screenshot of theéddBirthdayschema in the Z Browser. 110
Z Standard Email mark-up for tWeldBirthdayschema. 111
ZSL mark-up for theAddBirthdayschema in both the “text” (top) and

“box” (bottom) styles. 112
Z Interchange Format mark-up for tAddBirthdayschema. 114
ZML mark-up for theAddBirthdayschema. 116

Overview of the rendering process from a ZML source document to a final
HTML document. Note the parallel with Figure5.2. 116
Screenshot of thBirthdayBookspecification rendered using HTML and
Unicode in a web-browser. Th&ddBirthdayschema is shown. Note the
underlined hyperlinks used for schema and data-type definitions. . . .117
The XML to HTML transformation via XSLT shown in Figure 5.9 can be
performed within the browser. 118
Two screenshots of thRRemindbirthday schema illustrating schema
expansion in ZML. The top schema shows the unexpanded linear form.
Note the B’ expand andE’ collapseicons. 119
TheAddBirthdayschema marked-up using the “interchange” version of
ZML. e e 120
A lattice diagram produced by Duquenne’s GLAD tool. The lattice
represents gluing decomposition of questionnaire results about right-
handed writers. 123
Three screenshots of the DOS-based Conlmp tool. The context editing
screen is shown top left, the display of concepts at bottom left and the main
menuontheright. 124
Screenshot of the planets example from Figure 1.2 renderedRisigngm

— a DOS-based tool that supports additive line diagrams. 125

Xiv

5.17 The Bscana workflow. o 127
5.18 Screenshot of ¥conba showing the formal context and line diagram
windows. Note that the line diagram is the same as Figure 3.1 which was
renderedusingToscanald. e 128
5.19 Two screenshots showing the Siena editor top left and ToscanaJd version 1.1
lower right. Note the diagram preview shown in the bottom left corner of
the ToscanaJ screenshot which can be used to preview conceptual scdlées. .
5.20 Screenshot of the Cernato context and line diagram windows. Note that the
line diagram is the same as Figure 3.1 which was rendered using ToscaBgaJ.
5.21 Two screenshots of ConExp showing the “context editor” pane (top) and
the “lattice line diagram” pane (bottom). Note that the line diagram in the
lower image is the same as Figure 4.3 which was rendered using ToscaBaJ.
5.22 Galicia screenshot showingtrellis (lattice) window top right and the
context editing window lower left. The context corresponds to the planets
example in Table 1.1 and the lattice to Figure 1.2. Also note the tab
for a second context editing pane which can be used to describe binary
relationships betweentheobjects. 134
5.23 Line diagram of a sub-context from Table 5.2 summarising basic features
ofthegenerictools. 136
5.24 Line diagram summarising tool support for FCA abstractions, implications
and attribute exploration. 137
5.25 Concept lattice based on a sub-context of Table 5.3 showing the file formats
read by the generic FCAtools. 139
5.26 Overview of the specification transformation and exploration process using
SpecTrE. e 144
5.27 Three of the transformation rules used to translate specifications written
using Oz ATeX mark-up into ZML format. 145
5.28 ER Diagram representing the database structure for storing the object and

attribute information extracted from the specifications. 147

XV

5.29 ER Diagram representing the single table context used by ToscanaJ. 148.
5.30 ToscanaJd screenshot showing the standard “list object” view. Note that the
labels represent the databadgectid numbers rather than an object courit49

5.31 This list-query produces the menu option to display schema names shown

iNnFigure 5.32. e 149
5.32 ToscanaJ screenshot showing the “schema name” menu item. 150.
5.33 An automatically generated scale based on schema inputs. 151.

5.34 The Database Viewer code to implement ToscanaJd and browser integration
from within a “CSX” file. The object view enables the pop-up menu shown
in Figure 5.35 for displaying schemas within the browser. 152
5.35 ToscanaJ screenshot showing tfieat of a right mouse button click on a
schema name. SelectifiGoto spec...” from the pop-up menu will launch

a web-browser displaying this schema within the original specification. 153

5.36 Screenshotofthe SpecTrEGUI. 154
5.37 Screenshot of the SpecTrE interface in “Blofeld” mode. 154
6.1 Architecture ofthe CASStool. 161

XVi

List of Tables

11

1.2

1.3

1.4

2.1

2.2

2.3

Formal context containing information about the planets. IBaeethe set
of planet named\yl = {small mediumlarge, near, far, moor(s), na_moor}

and the incidence relatidnis represented by the presence of ahwhere

A many-valued context showing the equatorial diameter (in kilometres) for

thenineplanets. 15

A conceptual scale which maps planet diameters to thesizals medium

andlarge. 15

The formal context that results from applying the conceptual scale in

Table 1.3 to the many-valued contextin Table 1.2. 17

Formal context considering the 47 papers in the survey as objects and the

ISO software engineering activities as attributes. 35

A Formal Context showing reported application languages for the 47 papers
in the survey. The attribute values represent the size of the application
in KLOC (“thousand Lines Of Code”). A KLOC value of “0” indicates

that the paper reported application to a particular language but no size was

gquoted. e e 38

Formal context showing direct citations within the set of survey papers.
Here the objects are the papers and the attributes are the paper citations.
Note that uncited papers have been excluded from the attribute set to

increase tablereadability. 57

2.4

2.5

3.1

3.2

3.3

3.4

3.5

4.1
4.2

4.3

4.4

4.5

Formal context representing closure of citations within the set of survey
papers. Note that uncited papers have been excluded from the attribute set

to increase table readability. 60

For each of the survey papers this table shows the number of citations
reported by Researchindex, the number of direct citations within the set of

papers and the total number of citations after computing the citation closte.

First formal context created from the five use-cases. The corresponding

concept lattice isshown in Figure3.1. 69

Changes to the formal context from Table 3.1 are shown in grey. A new
time object has been added atyghe of ticketadjusted. The corresponding

concept lattice isshowninFigure3.2. 171

Changes to the formal context from Table 3.2 are shown in greybiije
seasoruse-case has been adjusted and the corresponding concept lattice is

showninFigure 3.3. 73

Changes to the formal context from Table 3.3 are shown in grey. The
implicit time references have been added and the corresponding concept

latticeisshowninFigure3.4. 75

Changes to the formal context from Table 3.4 are shown in grey. The

missedfare and implicit station information has been corrected. The

corresponding concept lattice is shown in Figure 3.5. 7
Formal context for thBirthdayBookspecification. 87
Sub-context of Table 4.1 highlighting compositiorRRindBirthday . . . 88

Sub-context of Table 4.1 highlighting compositiorRAddBirthday The

invalid “bit” is showningrey. 89

A sub-context considering the basic data-types fromBimthdayBook

specification as attributes. oL 92

Formal context consideringy (\Delta) and= (\Xi) operation-types from

theBirthdayBookspecification as attributes. 93

XViii

4.6 A sub-context representing schema composition withirBinlhdayBook
specification. 95
4.7 Formal context considering schema names as both objects and attributes
(G=M). . 96
4.8 Formal context containing the basic data-types and\tfidelta) and=
(\Xi) operation-types from the extend@&irthdayBookspecification. . . . 100
4.9 A sub-context representing schema composition within the extended
BirthdayBookspecification. The corresponding line diagram appears as
Figure 4.11. 101
4.10 Formal context considering schema names as both objects and attributes for
the extended version of tigirthdayBookspecification. The corresponding
line diagram appears as Figure 4.12. 102
4.11 Formal context from Table 4.4 with the objects and attributes
corresponding to the zoomed line diagram in Figure 4.13 shown in greyL04
5.1 Multi-valued context summarising tool features fronudPicke’s web-
site [153]. 133
5.2 Derived one-valued context summarising features of the general-purpose
FCATOOIS. 135

5.3 Derived one-valued context showing the file formats used by the generic

6.1 A formal context representing schema compositiofikKjn This context
provides an alternate representation of the context in Table 4.6 using binary
relationships betweenschemas. 167

6.2 A formal context representing schema refinemef@in 168

XiX

Chapter 1

Introduction

This thesis describes the application of Formal Concept Analysis (FCA) to a number of
early-phase software engineering activities. FCA is a data analysis technique that describes
the world in terms of objects and the attributes possessed by those objects. Thomas Boole’s
understanding that eonceptcan be described by itsxtensionand intensionrepresents

the philosophical starting point for FCA. The mathematical foundations were laid by
Birkhoff [19] who demonstrated the correspondence between partial orders and lattices.
Birkhoff showed that a lattice can be constructed for every binary relation between a set of
objects and a set of attributes with the resulting lattice providing insight into the structure
of the original relation.

FCA arose during the early 1980’s from Wille’s work to restructure lattice theory [225]
and it has been successfully applied in a number of areas including psychology [181, 182,
53, 55], psychiatry [53], biological and social sciences [76, 53, 55], civil engineering [121],
experimental design [53], information retrieval [86, 35, 41, 161] and software engineering.
Within the field of software engineering FCA has already been used for a variety of tasks
including the re-engineering of legacy applications, the identification and maintenance
of class hierarchies, configuration management and dynamic program analysis. These
approaches are discussed in Chapter 2.

A survey of academic papers reporting the application of FCA in software engineering
was conducted during the course of this research. The survey found that the bulk of

applications of FCA in software engineering have focused on software maintenance and

1

re-engineering tasks. In this thesis we broaden the approach by applying FCA to a number
of early-phase activities within the software engineering life-cycle.

With respect to the requirements engineering phase, a case study is presented comparing
two class hierarchies that model aspects of a mass-transit railway system. The first
hierarchy was produced for an existing Object-Z specification of the system while the
second was derived using FCA. Contrasting the two hierarchies revealed that they were
essentially the same, however, th&eliences highlighted aspects of the first hierarchy that
were specification artefacts.

With respect to the design phase, the thesis discusses the use of FCA for the navigation
and visualisation of Formal Specifications written in Z. In response to the continued call for
formal methods tool support, we implement and explore a prototype specification browser
that exploits the abstractionffarded by FCA.

The next section of this chapter introduces the motivation for this work and outlines the
overall structure of the thesis. Section 1.4 then provides a brief overview of some related
work. Finally, the chapter concludes with the required background for both FCA and the Z

specification language in Sections 1.5 and 1.6 respectively.

1.1 Background

There is a deep philosophical understanding behind FCA — the notion that a concept is
a unit of thought that is constituted by its extension and intension. A concept’s extension
contains all the objects that belong to the concept and the intension consists of all the
attributes that the objects have in common. “Formal” in the name distinguishes the
mathematisation of a concept from the concepts of the human mind.

In FCA the objects, attributes and the relationship between them are normally
represented in a crosstable known afoemal context Again the use of the word
“formal” indicates that a “formal context” only encodes some small part of what is usually
understood as a context [78, 77]. The “formal” in Formal Methods, however, denotes the
ordered and deliberate application of mathematically rigorous processes based on formal

logic to the act of specification [142].

Formal methods can be broadly defined as tools and notations with formal semantics
that support the unambiguous specification of the requirements for a computer system.
They provide a means by which the completeness and consistency of a specification can be
explored as well as proofs of correctness for implementations of the specification [217, 29].
The application of formal methods can be of benefit to specifiers, implementers, and testers
by providing unambiguous communication, verification, validation, and in some cases
mechanised code generation [208].

Despite the potential benefitfered by the integration of formal methods into software
development there still continues to be limited adoption in industries outside of those
writing safety critical software. While there can be significant advantages obtained by
integrating formal methods like Z into the production of software artefacts there are also
associated costs. This is the basis of a cartoon from the “Formal Methods Humour” web-
page [95] which appears in Figure 1.1. The cartoon reflects on the poor adoption of formal
methods by industry. Apparently the only thing harder to sell than formal methods is
“electric eel on a bun”. Hall makes this observation in the classic “Seven Myths of Formal
Methods” paper:

Formal methods are controversial. Their advocates claim that they can
revolutionise development. Their detractors think they are impossitilguli.
Meanwhile, for most people, formal methods are so unfamiliar that iffiedit

to judge the competing claims [91].

There have been several attempts to dispel the “myths” surrounding formal
methods [91, 28], however, a number of them live on and in particular the myths
that “formal methods require highly trained mathematics” and that “formal methods are
unacceptable to users”. As is the case in software engineering there appears to be no silver
bullet. With respect to the need for highly trained mathematics Hall states:

A formal specification is full of mathematical symbols, which render it
incomprehensible to anyone unfamiliar with the terminology. Therefore, it is
supposed, a formal specification is useless for non-mathematical clients [91].

Hall then goes on to point out that mathematics is only one part of a specification and

that there may be other ways of conveying the specification to help clients understand a

3

£LECTRIC

=-0nly thing harder to sell than formal methods

Figure 1.1: Cartoon from the “Formal Methods Humour” web-page [95] that
reflects on the adoption of formal methods.

project. Finney [68] also argues that the level of mathematics required to understand Z

specifications is higher than that suggested by the proponents of formal methods.

To find reasons why formal methods are not being adopted by industry, Knight, DeJong,
Gibble and Nakano [119] conducted a case study where part of the control system for a
research reactor was specified using thrékedint formal methods. In a paper describing
their results they include the almost humorous statement that “A surprising discovery was

that the mathematical notation used in Z was not familiar to the nuclear engineers”.

In an attempt to address this problem there have been a number of approaches to
provide alternative visual representations of specifications for Z-like languages that have
both textual and graphical components within their notation. Typically these approaches
use the Unified Modelling Language (UML) [22] to visualise and aid in the understanding
of a particular specification aspect. A representative example is the work of Carrington and

Kim[117, 116, 115, 114] and these approaches are further discussed in Chapter 4.

Tool support has also been suggested as another path to increase the usability of formal

4

methods. As the formal methods tools database [71]ctm® . spec.z FAQ [25], and the

WWW Virtual Library [26] demonstrate there is existing tool support for formal methods,
however, there continues to be a call for new tools [195, 194]. These calls cite a need not
only for tools that have matured from research prototypes into robust, commercial quality
software [33, 209], but also for functionality that is not currently supported. There is a
need for tools that can present comprehensible specifications and proofs for large systems

at different levels of abstraction. German notes that:

One important problem in current formal methods is that in practice it is
difficult to relate formal views of the same system afedent levels of
abstraction. If we had better practical solutions to this problem, it might be
easier to apply formal methods at many stages during the development of a
large system [80].

In support of this, Clarke and Wing in their paper on the state of formal methods and

future directions list abstraction as a fundamental concept that requires further work:

Real systems areftiicult to specify and verify without abstractions. We need
to identify different kinds of abstractions, perhaps tailored for certain kinds
of systems or problem domains, and we need to develop ways to justify them

formally, perhaps using mechanical help [37].

With reference to formal methods based on Abstract State Machines a similar request
is made for “more advanced and industrially satisfactory tool support...for defining,
simulating and visualizing. .. ASMs” [23].

Clarke and Wing go on to list a number of criteria that methods and tools should attempt
to address including ease of uséiaency, and focused analysis. They argue that tools and
their output should be as easy to use as compilers. The time taken for analysis should be
comparable to that of compilation and individual tools need not be good at analysing all
aspects of a system, but they should analyse one aspect well.

The same theme underlies discussion on the Community Z Tools (CZT) mailing
list [135] which seeks to promote re-usable tools to increase interoperability and to

stop research projects from re-inventing the wheel so they can concentrate on genuine

5

innovations and improvement [210]. The CZT mailing list was created so that the

shortcomings of formal methods tools could be addressed.

The Protocol Engineering Laboratory at the University of Delaware [209] also claims
that the need in formal methods is not for new languages — they consider existing
languages to be flicient for ambiguity-free specification — but the need is for more user-

friendly and intuitive tools.

1.2 Motivation

Having briefly outlined some of the problems with formal methods the motivation for
the thesis can now be unfolded in three parts. First, the majority of FCA applications
in software engineering have focused on software maintenance and re-engineering tasks.
The thesis seeks to address this by exploring FCA applications to early-phase software
engineering activities. While formal methods are applicable to all phases of the software
engineering life-cycle [142, 143] the process of formal specification fits within the design

phase.

The second motivation for this work is related to formal specification and in particular
to existing attempts to increase the usability of Z-like languages by incorporating alternate
graphical representations, most notably UML. As an alternative to this approach, the thesis
explores the application of FCA for visualising and navigating formal specifications written
inZ.

Finally, the third motivation represents a response to the continued call for formal
methods tool support. Tool support represents another approach to increase the usability
and thereby the adoption of formal methods like Z. In response to this call the thesis
describes the implementation of a prototype specification browsing tool. This tool
embodies the research hypothesis: an integrated architecture for navigating and visualising

formal specifications using FCA.

1.3 Thesis Structure

The overall structure of the thesis reflects the three motivations described above. Chapter 2
presents an overview of FCA support for software engineering. The initial sections of the
chapter introduce a framework based on the 1ISO12207 software engineering standard. The
framework is then used to categorise 47 academic papers reporting software engineering
applications for FCA. In addition to the ISO12207 categorisation a number of additional
classifications are introduced based on the target application language, reported application
size, collaboration between authors and citation patterns. FCA is used to present the
survey results and an FCA-based methodology for literature surveys in general is discussed.
Chapter 2 closes with a brief overview of the techniques described in the survey papers.

Chapter 3 describes an exercise in object-oriented (OO) software modelling where FCA
is applied to a formal specification case study using Object-Z. In particular, the informal
description from the case study is treated as a set of use-cases from which candidate classes
and objects are derived. The resulting class structure is then contrasted with the existing
Object-Z design and the two approaches are discussed.

Chapter 4 introduces an approach to navigating and visualising Z specifications using
FCA. The approach takes a source specification writteATgXland produces a formal
context representing the static structure of the specification. A number of line diagrams
can then be produced which allow a user to investigate and explore various properties
of the specification. The line diagram does not replace, but is intended to be used in
conjunction with, the original Z specification. Abstraction through conceptual scaling,
nesting, zooming and folding line diagrams allow users to retain context while navigating
large specifications and an example based oBtithdayBookspecification is presented.

Chapter 5 describes the implementation of a tool developed by the author for
interactively exploring Z specifications. The tool implements the ideas introduced in
Chapter 4 by exploiting ZML [195], an XML representation of Z, and the open-source,
cross-platform FCA tool Toscanad [16, 15]. The chapter opens with a discussion about
Z mark-up and representation issues including a number of approaches to render Z

specifications on the Web and ZML in particular. An overview of a number of FCA

7

tools (including Toscanal) is then presented and the remainder of the chapter describes the
implementation of the prototype FCA-based specification browsing tool. Finally, Chapter 6

concludes the thesis and discusses future directions for this work.

1.4 Formal Methods and FCA

This section provides a brief overview of some existing work that uses both formal methods
and FCA. For example, Fischer has described an approach for browsing and navigating a
software component library by combining formal methods and FCA [70]. Components
in the library are associated with formal specifications that capture their behaviour in
the form of pre-conditions and post-conditions. Automated theorem provers are used to
deduce valid relations between pairs of components for a numbefterfadit relation types
including refinement and matching. A formal concept lattice is then computed that is used
as a structure for navigating the library. Fischer’s approach builds on the earlier work of
Lindig [128] and both approaches are summarised in Section 2.4.3.

Mili, Boudrigua, and Elloumi have also produced a semi-lattice of specifications where
a set of specifications are ordered using the “stronger than” relation [138]. A specification
S, beingstronger thananother specificatio, has a number of interpretations including
S, is more refined, carries more input-output information, or is more specificghafith
this ordering thdeast upper boundetween two specifications captures the total input-
output information carried by each of them and tireatest lower boundaptures the
common input-output information. This approach has applications for combining multiple
specifications during specification generation as well as completeness checking during
validation. The resulting lattice structure has also been used to organise a software library
for component reuse, however, itldirs from a concept lattice because it does not admit a
universal upper bount

More recently, Ammons, Mandelin, Bodik, and Larus [5] have also incorporated FCA

and Formal Methods in their work to debug temporal specifications. While very small

Iwhile a concept lattice must be a complete lattice (see Section 1.5.2) two sub-structures derived from
the concept lattice have also found applications:|teberg latticeg[191] and theGalois sub-hierarchy87].

8

specifications can be debugged by inspection, larger specifications are verified using tools
that check the specification against a number of programs. There may be hundreds or
thousands of execution traces from these checks and these are used as the formal objects
in their analysis. Each of the execution traces must be classified by an expert who decides
if they are correct or erroneous. By considering transitions within the finite automata that
represent the specifications as the formal attributes, a concept lattice can be produced that
clusters similar traces together. An expert can then classify clusters of traces rather than

classifying them all individually.

1.5 Formal Concept Analysis

FCA is a way of describing the world in terms of objects and the attributes possessed by
those objects. This section introduces the FCA notation and conventions used throughout
the thesis. The introduction is based on Ganter and Wille’s FCA textbook [78] and also

seeks to be consistent with the notation used by Davey and Priestly [44].

As briefly mentioned at the start of this chapter, FCA is based on the philosophical
understanding that a concept can be described fxiension— that is all the objects that
belong to the concept and iistensionwhich are all the attributes that the objects have
in common. For example, the extension of the concept “mammal” includes the objects
“humans” and “mice” while the intension includes the attributes “warm blooded” and “has
hair”. The relationships between the set of objects and the set of attributes is represented

by aformal context

1.5.1 Formal Context

A formal contextK := (G, M,1) is a triple whereG is a set of formabbjects(from the
German “Gegenande”),M is a set ofattributes(from the German “Merkmalle”), antl
is anincidencerelation between the objects and the attributesc G x M is a binary

relation where @, m) € | is read “objectg has attributem” and is often written agim

9

£ 7|5
n

=2 =4

35|85 [S]E

2|28 =|S|d

H|EIZ|c|®E |

Mercury || X X X

Venus X X X
Earth X X X
Mars X X X
Jupiter X X | X
Saturn X X | X
Uranus X X | X
Neptune X X | X
Pluto X X | X

Table 1.1: Formal context containing information about the planets.
Here G is the set of planet named/ = {small mediumlarge, near,far,
moor(s), na_moor} and the incidence relatidnis represented by the presence
of an x’ wheregim.

for convenience. A formal context can be represented as a crosstalblere the rows
represenG, the columns represeht and the incidence relatidns represented by a series
of crosses as shown in Table 1.1

In this example taken from Davey and Priestly [44] the objectGeatontains the
nine planets of the solar system while the attribute Met= {small medium large,
near, far, moor(s),nao_moonr. A ‘x’ at the intersection of an object row and attribute
column indicates that the object possesses that attribute. For example, the planet Earth
has a moon soHarth, moor(s)) € I. While the inclusion of bothmoon(s)andna_moon
attributes appears to be redundant in this example, the context has been created so that
subsets of the attributes can be usedageptual scalesConceptual scaling is introduced

in Section 1.5.4.

For a subset of the object&,c G we can define the set of common attribuéésas:

Al :=ImeM|(gmel,Vge A}

and dually, for a subset of attributé® c M we can define the s& of objects having all

the attributes fronB as:

2The termscontext crosstableandformal contextare used interchangeably throughout the remainder of
the thesis.

10

Bl:={geG|(gm) el,¥Yme B}

For convenienc@' andB! are often write ag' andB’.

A concept can be found by taking a subset of the objects, finding the set of all attributes
that the objects possess and then determining the set of all objects with those attributes.
For example, starting with the planet Mars, the set of attribBtisgsmall near, moor(s)}.

The set of all planets with these attributéss {Earth, Mars} and together these two sets
represents the concepE@arth, Mars}, {small near, moor(s)}). (A, B) is aformal concepbf
(G, M, |) iff:

ACG BcCcM, A=B, and B = A

The setA is called theextentandB theintentof the formal conceptA, B).

Given the above definition, thefy represents the intent of the conceptB) which
can be written A, A’). FurthermoreA” is the smallest extent containidg Consequently,

A C Gis an extentff A” = A. Similarly, B C M is an intentff B” = B.

Within the formal context a formal concept represents a maximal rectangle and the set
of all formal concepts of G, M, 1) is B(G, M, 1) (from the German “Begfie”) or B(K).
For the example shown in Table IKlcontains exactly 12 formal concepts wh&€K) is
the set:
{({Mercury, VenusEarth, Mars, Jupiter, Saturn Uranus NeptunePluto}, {2}),
({Earth, Mars, Jupiter, Saturn Uranus NeptunePluto}, {moor(s)}),
({Jupiter, Saturn Uranus NeptunePluta}, {far, moorn(s)}),
({Jupiter, Saturr, {large, far, moor(s)}),

({Uranus Neptung, {mediumfar, moor(s)}),

({Earth, Mars, Pluto}, {small moor(s)}),
({Pluto}, {small far, moor(s)}),

{
{
{
{
({Mercury, VenusEarth, Mars, Pluto}, {small),
{
{
({Mercury, VenusEarth, Mars}, {small nean),
{

({Mercury, Venus, {small near, na_moory),

11

({Earth, Mars}, {small near, moor(s)}),

({@}, {small mediumlarge, near, far, moor(s), no_moon)}.

The concepts of a context are ordered byghbconcept-superconcept relatiaich

is defined by

(Al, Bl) < (Az, Bz) = Al C A2 A Bz - Bl

where @y, B,) is called asubconcepbf (A,, Bo) and conversely A, B,) is asuperconcept
of (A1, B;). Subconcepts are said to &malleror less generathan their superconcepts and

the superconceptarger or more generathan their subconcepts.

1.5.2 Formal Concept Lattice

For the set of concept®(K) there is always a greatest subconcept and a smallest
superconceptB(KK) together with the order relatiorx® forms a complete latticé3(K).

A complete latticeis a partially ordered set in which every subset has a greatest lower
bound and a least upper bourtd(KK) is called theconcept latticeof K. Concept lattices

are the basic conceptual structure in FCA and are also sometimes referred Gakmssa

lattice becausd and| form a Galois connection betwe&andM [44].

The basic theorem on concept lattices states that the concept BV,) is a

complete lattice in which thmfimumis given by:

/\teT(At’ Bt) = (ﬂteT At’ (UteT Bt)”)

and thesupremunby:

Vier(A, By = ((UteT A" Mer B[)

A complete lattice. is isomorphic taB(G, M, 1) iff there are mappings:"G — L and
4 M = L such that{G) is supremum-dense in (M) is infimum dense i andglmis

equivalenttoyg < umVge G,¥Yme M. In particularL = B(L, L, <).

12

In the worst case a concept lattice can consist 'ot@ncepts where the value of
n = (mn(G|, |M|). The complexity is therefore exponential. However, Godin and
Mili [86], and Lindig [128] offer experimental evidence that in practice the behaviour
is typically polynomial. Incremental lattice construction algorithms have also been

demonstrated [85, 83].

1.5.3 Line Diagram

A formal concept latticéB(KK) can be drawn as a specialised Hasse diagram [44] which is
also commonly known aslabelled line diagran®. Each concept is represented by a node
in the line diagram and the line segments represent subconcept-superconcept relations. The

line diagram corresponding to the formal context in Table 1.1 appears as Figure 1.2.

Each node in the line diagram having exactly one segment down must also have at least
one object name. Similarly, each node with a single line segment up must have at least one
attribute name. These are knowniasducible objects and attributes. For example, the
two nodes below the top of the diagram in Figure 1.2 each have one line segment up and

are labelled with the attribute names “small” and “moon(s)”.

Rather than labelling each concept with its extent and inteedaced labellingsgcheme
is typically used so that each object and each attribute appear only once on the diagram.
Reduced labelling is used in Figure 1.2. In this scheme the label for an gagdrawn
below theobject concepyg := ({g}”, {g}’) while the label for an attributenis drawn above
theattribute concept: m:= ({m}’, {m}”’).

The extent of a concept represents all the object labels that can be reached along a
descending path from the concept. The set of concepts along the downward path is known
as thedown-setor order ideal Conversely, the intent of a concept can be recovered by
collecting all of the attribute labels along upward paths from the concept. The set of

concepts along the upward paths are known asifhsetor order filter.

3Although a line diagram is just a representation of a formal concept lattice the lieerdiagramand
concept latticeare used interchangeably throughout the remainder of the thesis to denote the labelled line
diagram of a formal concept lattice.

13

small:X moon(s):X

near:X far:X
no moon:X al large:X
Venus e R s Jupiter
Mercu ’ N Saturn
Yy < S Uranus
Earth Neptune
Mars

Figure 1.2: The formal concept lattice corresponding to the planet context in
Table 1.1.

For example, the extent of the concept with the attribute label “small” in
Figure 1.2 can be found by following the downward paths to recover the planets
{VenusMercury, Earth, Mars, Pluto}. That is, those planets which are small. The attributes
or intent of the planet Pluto can be found by following the upward paths from the concept

with the object label “Pluto” to recover the dsmall moor(s), far}.

This is an interesting feature of FCA. Unlike some other data analysis techniques, the
original data from the context can be recovered directly from the line diagraptications
between attributes can also be read from the line diagram. For example, there are at least

two planets that satisfy the following attribute implications:

{nomoon = {small nean,

{far} = {moor(s)},

{nean = {small},

{large} = {far, moor(s)}, and

{medium = {far, moor(s)}.

More formally, an implication between attributes M is a pair @ B) of subsets

A,B € M denotedA = B. The implication is read asA'implies B” where the sef is

14

diameter (km)

Mercury || 4880

Venus 12,100
Earth 12,756
Mars 6,786.8
Jupiter ||143,200
Saturn 120,000
Uranus 51,800
Neptune || 49,528
Pluto ~2,330

Table 1.2: A many-valued context showing the equatorial diameter (in
kilometres) for the nine planets.

€
=|2| o
35| Y
D =
5 £l
< 25,000 km X
> 25,000 km and < 100,000 km X
> 100,000 km X

Table 1.3: A conceptual scale which maps planet diameters to thessiedls
mediumandlarge.

the premiseof the implicationA = B andB is theconclusion An implication holds in a
formal contextK iff every object that has all the attributesAralso has all attributes iB,

B € A”, which is equivalent té&\' C B'.

1.5.4 Conceptual Scaling

In addition to one-valued data FCA can also be used to analyse many-valued data sets like
the table shown in Table 1.2. Aany-valued contexs a 4-tuple G,M, W, 1) whereG
is a set of objectsM is a set of many-valued attributed/ a set of attribute values and
| CGxMxWwherefg,mv)eland g mw) el = v=w.

A many-valued context is first transformed into a one-valued contexdtomgeptual
scaling A conceptual scaléor a many valued attributen is a one-valued context which
has the attribute values ofamong its objects. Table 1.3 presents such a scale which maps

planet diameters to the sizesiall, mediumandlarge.

15

Let (G,M, W,) be a many-valued context and for eanke M let Sy, := (G, M, Im)
be a scale fom. Thederived contexof (G, M, W, 1) with respect tglain scalingwith the
scales &, | me M) is then G, N, J) where:

N = Xiemim} X My,

and

(0,(mn) €J = F, (@ mw) el and (v, n) € I,

The derived context resulting from the application of the conceptual scale in Table 1.3
to the many-valued context Table 1.2 appears as Table 1.4. The corresponding line diagram
is shown in Figure 1.3. Conceptual scales represent a very powerful tool that can be used to
store views that partition the data being analysed. Within a conceptual data system multiple
views can be stored and applied téeetively query the data.

A number of elementary scale types are available includiogninal, ordinal, inter-
ordinal and bi-ordinal scales. Nominal scales are used to scale attributes with mutually
exclusive values such @sioor(s), no_moor}. Ordinal scales are used where the values of
a many-valued attribute are ordered and each of the values implies the “weaker” ones. For
example, ordinal scaling could be used with the attribute vgktesng stronget strongest
and the result is a chain of extents which can be interpreted as a hierarchy.

Inter-ordinal scales are used to scale bipolar values which are often used to represent
qguestionnaire answers. For example, the valged, < 2< 3,> 1, > 2, > 3} result
in extents which are the intervals of values. Bipolar attributes can also be scaled using
bi-ordinal scales where there is a partitioning within a hierarchy. For example, within
a marking scheme with valugsery poot poor, acceptablegood very good where the

value “very good” implies “good” but not “poor”.

1.5.5 Nested Line Diagrams

Like conceptual scalingyested line diagramiepresent a powerful tool for abstraction and

analysis. A nested line diagram is produced by first partitioning the attribut®l sut

16

medium
large

Mercury
Venus
Earth
Mars
Jupiter X
Saturn X
Uranus X
Neptune X
Pluto X

X | X[x|x|| small

Table 1.4: The formal context that results from applying the conceptual scale
in Table 1.3 to the many-valued context in Table 1.2.

small:X medium:X large:X
Venus Uranus Jupiter
Earth Neptune Saturn
Mars
Pluto
Mercury |®

Figure 1.3: The formal concept lattice corresponding to Table 1.4 (a sub-
context of Table 1.1 for the size attributemall, mediunandlarge).

a context into the setsl; andM,. The two concept latticeB(G, M1,1 N G x M;) and
B(G, My, | N G x M) can then be computed. The nested line diagram is the direct product
of these two lattices where the element3¢6, M, I) are shown as solid circles. For two

contextsK; andK, thedirect productis given by

K xK, := (Gl X Gy, M1 X M, V)

with (g1, 92) V(my, mp) (= gul1my or golomp.

As an example, the context from Table 1.1 can be partitioned into the two sets

17

near:X moon(s):X

no moon:X far:X
Mercury Mars Neptune
Venus Earth Uranus
Pluto
Saturn
Jupiter |®

Figure 1.4: The formal concept lattice for a sub-context of Table 1.1 for the
attribute seM = {near, far, moor{(s), no_moon.

{small mediumlarge} and{near, far, moor(s), nao.moor}. The line diagrams corresponding
to the two sub-contexts are shown in Figures 1.3 and 1.4 respectively. The resulting nested

line diagram is shown in Figure 1.5.

Section 5.2.3 of the thesis introduces the FCA toalacdnpa and TOSCANA which
implement conceptual scaling and nested line diagrams using formal contexts that are
stored in relational databases. The normal workflow for these tools is to partition a single
large context into sub-contexts which are then used as scales. Multiple scales can be

composed together tdfectively query and explore the data which can be viewed using

nested line diagrams.

1.5.6 Order Embedding

The automated layout of large or complex line diagrams in FCA often produces poor
results [41]. One fective approach for drawing lattices up to moderate size is to use
anorder embeddingvhere a lattice with a known layout is used to draw a second lattice.

In Figure 1.6 the lattice on the left is embedded in the lattice closest to center to produce

the lattice shown right.

18

medium:X

small:X large:X
@ @
Venus Earth Pluto Jupiter
Mercury Mars Y Saturn

Uranus
Neptune

Figure 1.5: Nested line diagram showing the scale from Figure 1.3 nested
inside Figure 1.4.

A mapy¢ : M — N between two ordered setsI(<) and (\, <) is called an order

embedding if the map isrder preservingsuch that

XY= X<y

for all x,y € M and furthermore, i also fulfils the converse implication

XY & X < py.

19

BirthdayBook
InitBirthdayBook
Success

BirthdayBook
InitBirthdayBook
Success

FindBirthday
AlreadyKnown
NotKnown
RFindBirthday

AddBirthday
RAddBirthday

Figure 1.6: The lattice shown right is the result of @der embedding The
initial lattice shown left is sometimes called a “reduced line diagram”.

1.5.7 Attribute Exploration

A concept lattice can be very large or potentially even infinite. However, despite being
unable to determine the entire lattice, parts of it may be known and the context may have
a comparatively small set of objects or attributes. The context of such an unknown lattice
is called aconceptual universand while it may not be practical or possible to completely
determine the context there is an approach for determining sets of “typical” objects or

attributes.

Let U := (Gy,M,ly) be a conceptual universe with a fixed set of attriblves A
typical or representativeset of object$s C Gy if the concept lattices®(Gy, M, ly), <) and
(B(G, M, Iy N (G x M)), <) are isomorphic such thaA(B) — (A, B). That is, the intents of

related concepts are the same.

Provided that a domain expert hasfistient knowledge, the process attribute
exploration[32, 75, 190] can be used to determine a typical set of objects. The process
suggests implications to the domain expert who either accepts the implication or rejects
it and updates the context with a counter-example. Prior to starting the exploration any
known, pre-existing implications — so calledckground implications— can be identified.

Once the exploration process is complete the result is a set of valid implications, known as

the Duguenne-Guigues-basand a context containing a typical set of objects.

20

By transposings andM in the context it is also possible to condotiect exploration
The question regarding implications then changes from “Do all the objects having all the
attributes of the premise also have all the attributes of the conclusion?” to “Do all the
attributes which belong to the objects of the premise also belong to all the objects of the
conclusion?”. Where both the set of objects and the set of attributes are extensible a domain
expert can switch between attribute exploration and object exploration to alternatively fill
out the set of objects and attributes respectively.

Attribute exploration can also make use of a three-valued logic where the third value

”

acts as a placeholder for unknown values, e.g. “true”,

false”, “uncertain”. Using this type
of logic only part of the conclusion needs to be disproved and any unknown parts can be left
open — perhaps to be determined as a later refinement step once the initial requirements
have been implemented. A number of tools support interactive attribute exploration and
an overview of tools for FCA is presented in Section 5.2. The next section of this chapter

introduces the notation used in the Z specification language.

1.6 Formal Specification in Z

Z1[47,92,183, 184, 230, 232] is a state based formal method that exploits ZernaelkeFr
set theory and first order predicate logic. The Z specification language was developed by
the Programming Research Group [150] at the Oxford University Computing Laboratory
in the early 1980’s — around the same time that FCA was first introduced. In 2002 Z was
standardised as ISIEC 13568:2002 [104], however, the work described in this thesis has
used the form of Z as introduced by Spivey [183] which is basically a subset of standard Z.
Specifications in Z are composed of nansastiemaboxes that describe operations by
their input and output behaviour. Schemas are divided into an upper region called the
declarationor signaturepart and a lower region called thpedicate property, or more
correctlyformulapart. Variables and their respective types are declared in the upper region
while the lower region contains predicates describing pre-conditions and post-conditions
for the current operation. Models are constructed by specifying and composing a series of

schemas and the schemas can be refined to reflect the desired level of system abstraction.

21

As a result of the mathematical nature of the notation (and the graphical nature of schema
boxes) most Z tools are comprised of at least a formatting packagé&Tixr[lL24] and a

type-checker.

Schemas are used to represent both the static and the dynamic aspects of a system. The
static aspects include the possible states of the system and any invariants that must hold on
state transitions. Dynamic aspects include the actual state changes, the possible operations

and the relationship between inputs and outputs.

Spivey’'sBirthdayBookspecification [184] represents the equivalent of a “Hello World”
program for Z. It introduces the notation and ideas behind the Z specification language.
Only parts of theBirthdayBookspecification are presented here and this introduction also
seeks to be consistent with the notation described by Diller [47]. BindadayBook
specification is also used as an illustrative example in Chapter 4 and the complete

specification appears in Appendix A.

TheBirthdayBookspecification provides an introduction to the Z notation by describing
a simple reminder system for recording people’s birthdays using a set of names and a set
of dates. Spivey’s specification of the system also includes schemas to add nefdatame

pairs into the system as well as operations to check for current birthdays.

The basic data-types in Z are modelled as sets — in this case a set of names and a set

of dates:

[NAME, DATE]

A schema can then be declared to describe the state space of the system as a set of
names that are recognised by the system and a partial mapping from the names to the

corresponding birthdates:

__BirthdayBook
known: P NAME
birthday: NAME -» DATE

known= dombirthday

22

name? ——p AlreadyKnown +—— result!

Figure 1.7: A black box specification of tiWdreadyKnowroperation.

The initial state of the system also needs to be described:

__InitBirthdayBook
BirthdayBook

known= &

Having declared the basic types, described the state space of the system and the initial
state, operations can now be defined. Schemas in Z are described by their input and output
behaviour. Diller uses the illustration of a black box specification where the implementation
is hidden inside the box and the specifier can describe conditions for the inputs and outputs.
The implementation of the box is left as an exercise for the programmer. Z uses procedural
abstraction to focus on what has to be done but not how it is done.

For example, to indicate if a name has already been used by the system an
AlreadyKnown operation can be implemented. A black box representation of the
AlreadyKnownoperation appears in Figure 1.7. In Z inputs are denoted with ‘?’ and
outputs with ‘. TheAlreadyKnowrfunction takes a name as input and produces an output
to indicate the success or failure of the operation.

Enumerated data-types can also be declared &ERORTdata-type could be used to
list the possible result values. This is an example of a free-type definition and it defines

REPORTas a set containing exactly three values:

REPORT ::= ok | already known| not known

The AlreadyKnownschema corresponding to the black box specification in Figure 1.7

could now be written in Z as:

23

__AlreadyKnown
=BirthdayBook
name& : NAME
result : REPORT

name € known
result = already known

Schema inclusion allows an existing schema to be used inside another schema. For
example, theEBirthdayBookdeclaration in théAlreadyKnownschema above includes the
BirthdayBookstate schema withiAlreadyKnownin both primed and unprimed versions.
Primes are used to denote the “after” or “post” states. This schema does not change the
state of the system so the pre and post states are the same, khatvi$ = knownand
birthday = birthday. The symbolsA andZ are short-hand conventions used to identify
those schemas that change the state of the sytgan(l those that do noE}*.

As an example that changes the state of the systemdii@irthdayschema takes a

name and a date as inputs and adds them int8itttledayBook

__AddBirthday.
ABirthdayBook
name& : NAME
date? : DATE

name ¢ known
birthday = birthdayu namée — date?

1.6.1 Schema Composition

In addition to simple inclusion, the schema calculus can be used to combine schemas
together to model more complex behaviour. For example, if a new state schema is
introduced to model the success or failure of operations then a more robust version of the
AddBirthdayoperation can be specified. An error reporting schema n&nedessould

be defined as:

4This is the standard usage afand = within a Z specification however the notation allows a user to
re-define their own meanings for these symbols.

24

___Success
result : REPORT

result = ok

Using schemaompositionor linking this new state schema could then be combined

with the AddBirthdayandAlreadyKnowrschemas to produdeAddBirthday

RAddBIrthday= (AddBirthdayA Successv AlreadyKnown

In addition to schema conjunctiom” and disjunction ¥’ other forms of schema
calculus include negation—', implication ‘=’, bi-implication <, piping > and
sequential compositior§’: The definition sign =’ allows one schema to be defined in
terms of others and this is sometimes known hstzontal schemarThe resulting schema

represents the merge of the linked schemas which can be written out in full as:

__RAddBirthday
ABirthdayBook
name : NAME
date? : DATE
result : REPORT

(name& ¢ knownA
birthday = birthdayu {name + date?} A
result = ok) v
(name& e knownA
birthday = birthday A
result = already known

This style of formal specification allows certain properties of a system to be proved and
schemas can also be specified dfedient levels of abstraction. The behaviour of a system

can also be explored without actually implementing the system itself.

Tool support for Z typically includes pretty printers, syntax checkers and type-checkers.
It is also possible to animate Z specifications — providing a partial implementation of the

specification in software — to aid the specification writer's understanding of the system.

25

A set-based notation like Z lends itself to animation using set-based functional languages
like Miranda [139] or Haskell [152]. Diller also presents a Prolog [160] based animation
example [47]. An overview of Z representation issues and tool support are discussed in

Section 5.1 of Chapter 5.

1.6.2 Object-Z

Object-Z [52, 174] is an extension of the Z specification language that provides object-
oriented structuring mechanisms. As with Z itself there are a number of object-oriented
Z variants including Z+ [125] and OOZE [3], however, Object-Z has been the most
successful.

A class in Object-Z is specified as a box that contains the features and operations of
the class and may also include generic parameters. A simple class implementing a generic
FIFO (First In First Out) queue from an example by Mahony and Dong [134] is presented
in Figure 1.8. A similar example is also used by Smith [174].

The generic parametét in the name of the class box represents the as-yet undefined
elements that will be placed on the queue. The general structure of a class in Object-Z

consists of the following parts in order:
Visibility List The first item in the class is a visibility list which defines the interface for

instances of the class. In tiigueueclass there is no visibility list so all the features
are implicitly visible.

Constants Any class constants are declared next. While there are no constants declared in
this specification a bounded queue could contain, for examjlgfexSizeor length
constant to define the maximum size of the queue.

State SchemaA class represents a template for objects that are instantiations of the class.
The state of an object is an instance of giate schemavhich is represented by
an unnamed schema box. As in Z, state variables are declared in the top part of
the schema. Any predicates in the formula part must be true and are referred to as
the class invariant In the Queueclass the value of the head of the quéuis only
specified for a non-empty sequence of items. @ahebutesof a class consist of

the state variables along with any constants that have been declared. State variables

26

— Queug¢X]

items: segX
A
h: X

items# () = h = headitemg

_INIT
items= ()

__Join
A(itemg
item? : X

items = items”™ (iten?)

__Leave
A(itemg
item : X
items# ()
item = h
item’ = tail(itemg

Figure 1.8: Object-Z class for a generic FIFO queue.

declared above the separator in the state schema are cgdiiehary variableswvhile
those below are known agcondary variablesSecondary variables are subject to
change whenever an operation is performed. In this example the value of the variable
representing the head of the quelnejay change every time an item is removed from
the queue.

Initial Schema Thelnitial Schemas always hamedviT and represents the initial state of
an object. The class invariant and the initial schema are conjoined to definditde
condition— in this case an initially empty sequence of items.

Operation SchemasThere are two operation schemas defining the available operations

on aQueue— a Join operation which adds an item to the back of the queue and a

27

Queue[X]

items: seq X
A
h: X

Join(item?)

Leave(item!)

Figure 1.9: Object-Z class diagram showing features ofjbeueclass.

Leaveoperation which removes the item at the head of the queue. Operation schemas
contain aA-list showing the primary attributes whose values may be modified by the
operation.

While the discussion of UML-like graphical representations and Z is delayed until
Chapter 4, Object-Z already includes a number of UML-like diagrams for illustrating
aspects of object-oriented specifications. An Object-Z class diagram summarising the
features of theQueueclass is presented in Figure 1.9. Chapter 3 also presents a case
study based on an Object-Z specification of a mass transit railway system.

Having already introduced the required background in FCA and Z and discussed

the motivation for the thesis, Chapter 2 presents a survey of FCA support for software

engineering.

28

Chapter 2

A Survey of FCA Support for Software
Engineering

This chapter presents a literature survey of 47 academic papers reporting software
engineering applications for FCA. An early version of the work presented here has been
published in a paper co-authored with Richard Cole, Peter Becker and Peter Eklund [200].
The initial sections of the chapter introduce a framework based on the 1S012207
software engineering standard that is subsequently used to categorise the survey papers.
Additionally, a number of alternative classifications based on the target application
language and the reported application size are introduced. The results of the survey are
also presented using FCA and the approaches described in the papers are briefly discussed.
While the first half of the chapter presents a background survey that supports the first
of the motivations outlined in Section 1.2, the second half of the chapter represents a new
research contribution. An FCA-based analysis of the author collaboration and citation
patterns within the set of survey papers is discussed in Section 2.6. This approach is then

extended and the use of FCA as a tool for literature surveys in general is presented.

2.1 Understanding Software Engineering

To understand how software engineering can be supported by FCA some understanding of
what software engineering is, or at least the processes involved, is necessary. This section

of the paper sets out a framework that will be used to classify papers from a software

29

SYSTEM
REQUIREMENTS

~

SOFTWARE
REQUIREMENTS

~

ANALYSIS

~

PROGRAM
DESIGN

~

CODING

N

TESTING

~

OPERATIONS

Figure 2.1: The classic waterfall life-cycle model.

engineering development perspective.

The development of software has traditionally been described by life-cycle models.
These models grew out of a need to mofieetively understand and manage the software
engineering process which has been characterised by failed, late, and bug-laden projects.
Royce [163] proposed the classic “waterfall” model which consists of s&egsor phases
that proceed in a linear fashion: System Requirements, Software Requirements, Analysis,
Program Design, Coding, Testing, and Operations. See Figure 2.1.

The waterfall model focuses heavily on the documentation produced during each
implementation phase and there may be some iteration between successive steps.
Royce realised that sometimes iterations happen across non-consecutive steps which is
undesirable. To address this he proposed some extensions to alleviate the “risk” which
largely focused on the production of additional documentation. The spiral model [20]
is an alternative life-cycle that directly incorporates risk analysis as one of four major
activities that also include: planning, engineering and customer evaluation. Starting in
the centre of a spiral the developers work through a planning phase, followed by risk

analysis, the engineering of a prototype system and then customer evaluation. The cycle

30

then repeats and each move around the spiral progresses outwards towards the final system
in an evolutionary fashion. Another life-cycle model that is a variant of the waterfall is the

“V” model [162] where each step down the left hand side of the “V” has a corresponding
validation or verification step on the right hand side. This model emphasises the role of
testing where requirements and design documents from the left hand side feed into the
validation activities on the right.

In addition to these three examples a number of other life-cycle models exist and the
most appropriate model to use for a given project may depend on a number of factors
including the type of project, the style of the developers and the organisational maturity of
both the developers and the customer. An alternative to the classic life-cycle approaches is
to use a meta-model that defines common software engineering activities independently of
a particular life-cycle model. Developers can then choose the most-appropriate life-cycle

for their project and the activities can be mapped onto the chosen model.

2.1.1 15012207 Software Engineering Standard

The 1SO12207 Software Engineering Standard [100] describes such a meta-model for
software engineering life-cycle processes and the standard includes thirteen activities that
can be mapped onto a chosen life-cycle model. The first of the activities is related to

starting the methodology, another four are system related and the remaining eight relate to

the software itself. The thirteen activities are:
e Process implementation

e System requirements analysis
e System architectural design

e Software requirements analysis
e Software architectural design

e Software detailed design

e Software coding and testing

e Software integration

e Software qualification testing

e System integration

31

e System qualification testing
e Software installation

e Software acceptance support
The standard notes that “these activities and tasks may overlap or interact and may

be performed iteratively or recursively”. From the IEEE Standard Glossary of Software

Engineering Terminology [99] the definitions of the software related activities are:
e requirements analysisThe process of studying user needs to arrive at a

definition of system, hardware, or software requirements.

e architectural design The process of defining a collection of hardware
and software components and their interfaces to establish the framework

for the development of a computer system.

e detailed designThe process of refining and expanding the preliminary
design of a system or component to the extent that the design is

suficiently complete to be implemented.

e coding and testing Where coding is defined as *“...the process of
expressing a computer program in a programming languagetestidg
is “the process of analyzing a software item to detect tHEeminces
between existing and required conditions (that is, bugs) and to evaluate

the features of the software items”.

e integration The process of combining software components, hardware

components, or both into an overall system.

e qualification testing Testing conducted to determine whether a system

or component is suitable for operational use.

e installation The period of time in the software cycle during which a
software product is integrated into its operational environment and tested

in this environment to ensure that it performs as required.

e acceptance supportrormal testing conducted to determine whether or
not a system satisfies its acceptance criteria and to enable the customer to

determine whether or not to accept the system.

32

In addition to the eight software related activities defined above an understanding of

software maintenance is also required.

2.1.2 Software Maintenance

The termsoftware maintenancgypically refers to the modification of a software system

that has already been deployed to the customer. The process of software maintenance
requires iteration through some or all of the previously defined activities and in terms of
the waterfall model it could be thought of as a feedback loop to previous stages. The IEEE

Standard Glossary of Software Engineering Terminology defines software maintenance as:

e software maintenanceThe process of modifying a software system or
component after delivery to correct faults, improve performance or other

attributes, or adapt to a changed environment.

The next section of this chapter uses these nine activities within a framework to classify

academic papers reporting the application of FCA to software engineering activities.

2.2 FCA in Software Engineering

We conducted a survey of 47 academic papers reporting software engineering applications
for FCA. While authors like Snelting [177] have provided an overview of software re-
engineering based on concept lattices there has been no broad survey of the literature. The
survey papers were analysed using FCA and a formal context was constructed with the
papers as the set of objects.

There is also a related body of literature describing the application of FCA to the
identification and restructuring of schemas in object-oriented databases, for example, the
work of Yahia, Lakhal, Bordat and Cicchetti [233], Schmitt and Conrad [167], and Godin,
Mineau, and Missaoui [83]. While a database typically forms the backbone of CASE
(Computer Assisted Software Engineering) tools this work is not considered within the

context of the survey.

33

2.2.1 15012207 Categorisation

A first classification of the papers that considers the software-related 1ISO12207 activities
as attributes appears in Table 2.1. The intention was not to classify a paper according
to a single activity but to record all of the activities supported by the approach described
in the paper. Note also that although “coding and testing” appears as a single activity
in the standard it has been broken down into two separate attributes for the classification
context. This context actually represents a sub-context of the total set of survey attributes

and therefore represents a conceptual scale which captures the 1ISO12207 activities.

References to papers included in the survey use the naming format adopted by the
Researchindex (formerly known as “CiteSeer”) digital library [146]. Paper names are
composed of the first author’s surname, the last two digits of the year of publication, and

the first word of the title (excluding words like “an”, “the”, “a”, etc.). For example Krone
and Snelting’s paper entitled “On The Inference of Configuration Structures from Source

Code” and published in 1994 would appeakasne94inferenc§l22].

The concept lattice corresponding to Table 2.1 appears in Figure 2.2 and it can be seen
that 27 out of the 47 papers in total describe applications to bofifware maintenance
anddetailed designThese papers are typically reporting the use of FCA to identify class
candidates in legacy code or the maintenance of class hieratcl@essidering the theory
behind the subconceptiperconcept ordering within a formal concept lattice this is an

obvious application.

An emerging body of literature related tequirements analysisan also be seen with
12 of the 47 papers reporting application in this area. It should be noted, however, that
papers with common authors are typically reporting work that describes the same example.
Across the total set of survey papers it is also noteworthy that there are only two describing
applications taestingand none of the collection explicitly report applicationstftware

integration, qualification testing, installation, acceptance supportoding

1To avoid confusion the terms “class” or “class candidate” will typically be used to refer to Object-oriented
objects as opposed to formal objects in FCA.

34

2]
_9, c o = §
E|2 £l |88
2(S|8 gl |32
5|E(8 c|5|c|g|2
qE_, o |o 2 “g 2|52
EEEEEEEE
§5|3/88|83|2/8|8
x|<[Q|o|~|E|0ls|<|n
Ammons03debugging [5] X X
Andelfinger97diskursive [6] X
ArevaloO3understanding-a [8] X X
ArevaloO3understanding-b [9] X X
Ball99concept [11] X X
BoettgerOlreconciling [24] X
BojicOOreverse [21] X | X X
Canfora99case [34] X X
Dekel02applications [45] X X
Duwel98identifying [58] X | X
Duwel99enhancing [56] X | X
Duwel00bridging [59] X | X
Eisenbarth0laiding [62] X X
EisenbarthO1lfeature [63] X X
Eisenbarth03locating [64] X X
Fischer98specification [70] X | X
Funk95algorithms [74] X X
Godin93building [87] X X
Godin95applying [84] X X
Godin98design [82] X X
Huchard99from [96] X X
Huchard02when [97] X X
Krone94inference [122] X X
Kuipers00types [123] X X
Leblanc99environment [126] X X
Lindig95concept [128] X
Lindig97assessing [132] X X
Richards02assisting [155] X
Richards02controlled [157] X
RichardsO2recocase [158] X
RichardsO2representing [156] X
Richards02using [159] X
Sahraoui97applying [166] X X
Schupp02right [168] X X
Siff97identifying [171] X X
Snelting96reengineering [175] X X
Snelting98reengineering [178] X X
Snelting98concept [176] X X
Snelting99reengineering [179] X X
Snelting00software [177] X X
Snelting0Ounderstanding [180] X X
Streckenbach99understanding [189] X X
TilleyO3software [201] X | X
TilleyO3towards [199] X | X
Tonella990object [204] X X
TonellaO1concept [203] X X
vanDeursen98identifying [216] X X

Table 2.1: Formal context considering the 47 papers in the survey as objects
and the ISO software engineering activities as attributes.

35

|Architectura| Design: | |Detailed Design: |

Qualification Testing:
Integration:
Installation:
Acceptance Support:
Coding: 0

Figure 2.2: The Formal Concept Lattice corresponding to the context in
Table 2.1. The objects are the 47 papers included in the survey while the
attributes are the activities defined in the 1ISO12207 standard.

Note that only object counts are shown on the diagram and the node colour also
indicates the distribution of objects. A lighter shade implies less objects while a darker
shade corresponds to a higher object count.

In addition to the attributes appearing in the context shown in Table 2.1, there were
133 attributes used in total to categorise the papers in the survey. These attributes included
the names of the authors, citations of other papers in the survey, the year of publication,
inputs, outputs, target application languages (e:gt,Java) and the “size” of any reported

application target.

2.2.2 Target Application Language

The context in Table 2.2 represents the application of the approach described within a
paper to a particular language. The attributes here are the programming languages; C, C
COBOL, FORTRAN, Java, Modula-2, Smalltalk, and the design or specification languages:

OMT, UML and Z. Both procedural and object-oriented languages are represented. The

36

attribute values record the size of any reported target application in KLOC (“thousand
Lines Of Code”) — for example, 106 KLOC represents an application containing 106,000
lines of source code. KLOC is also sometimes referred to as SKLOC (Source Thousand
Lines Of Code) and is a metric that is often reported to indicate project size in software
engineering. Where a paper contains multiple examples for the same language only the
largest application size is shown.

While there is some debate about the usefulness of size-oriented metrics like
KLOC [154] it does give a raw indication of application size. Within the set of survey
papers it may also be indicative of tool support. The application of these techniques to
moderately sized projects demonstrates the potential for real-world application.

A number of the papers report application to a specific language but do not report the
size of a particular application and the KLOC value for these papers appears as “0” in the
context. It is also interesting to note that where a non-zero value repeats in the context it
typically refers to the same example being reported in a number of papers. For example,
the 1.6 KLOC C application appears in the papeusik95algorithms, Krone94inference,
Snelting96reengineering, Snelting98concapd SneltingO0softwareSimilar patterns can
also be seen for the 106 KLOC FORTRAN, 100 KLOC COBOL and 1.5 KLOC Modula-2
applications.

Figure 2.3 presents a concept lattice that treats Table 2.2 as a simple one-valued context
where any KLOC valugs 0 = glm. It can be seen that 14 of the 47 papers do not report
any application to a particular programming or design language. Also of note is the paper
Snelting00softwargl77] which reports applications to all of the programming languages
except Smalltalk. This is a paper by Snelting that surveys earlier results from a number of

papers he has either authored or co-authored.

2.2.3 Reported Application Size

The line diagram in Figure 2.4 also summarises the context in Table 2.2 as an inter-ordinal
scale that only considers the maximum reported size in KLOC across all programming

languages for each paper. Note that 17 of the 47 papers now appear at the supremum. In

37

C++
COBOL
FORTRAN
Java
Modula-2
OoMT
Smalltalk
UML

Ammons03debugging 0
Andelfinger97diskursive
ArevaloO3understanding-a
ArevaloO3understanding-b 0
Ball99concept 0
BoettgerOlreconciling
BojicOOreverse 0
Canfora99case 200
Dekel02applications 0
Duwel98identifying
Duwel99enhancing
Duwel00bridging
EisenbarthOlaiding 0
EisenbarthOl1feature 76
EisenbarthO3locating 1,200
Fischer98specification
Funk95algorithms 1.6
Godin93building 0
Godin95applying
Godin98design
Huchard99from 0
Huchard02when 0
Krone94inference 1.6
Kuipers00types 100
Leblanc99environment 0 0 0 0
Lindig95concept
Lindig97assessing 5 106 15
Richards02assisting
Richards02controlled
Richards02recocase
Richards02representing
Richards02using
Sahraoui97applying 47
Schupp02right 0
Siff97identifying 28
Snelting96reengineering 1.6
Snelting98concept 1.6 0 106 15
Snelting98reengineering 0
Snelting99reengineering 0 9
Snelting00software 1.6 0 0 106 9 15
Snelting0Ounderstanding 12
Streckenbach99understanding 0 12
TilleyO3software 0
TilleyO3towards 0
Tonella990bject 21
TonellaOlconcept 249
vanDeursen98identifying 100

o

o

Table 2.2: A Formal Context showing reported application languages for the
47 papers in the survey. The attribute values represent the size of the application
in KLOC (“thousand Lines Of Code”). A KLOC value of “0” indicates that the
paper reported application to a particular language but no size was quoted.

38

Modula-2: O
FORTRAN: AN

SmallTalk: K vanDuersen98identifying UML:
Q @, () |canforasocase O @) O @)
Godin93building Lindig97assessing L - Kuipers00types Huchard99from N [HuchardOthen] TilleyO3software|
ArevaloO3understanding-f Dekel02applications % TilleyO3towards
Al loO3understanding- -
revaloldunderstanding-§ Tonellaggobject

Schupp02right
BojicOOreverse

Snelting98reengineering ®)

Krone94inference
Funk95algorithms
Sahouri97applying
Ball99concept
TonellaO1concept
Ammons03debugging
Eisenbarth01aiding
EisenbarthO1feature
Snelting96reengineering|
Siff97identifying
EisenbarthO3locating |®

Snelting98concept

O
Snelting99reengineering|

Streckenbach99understanding
Snelting00understanding

Snelting00software|

Leblanc99environment

Figure 2.3: Formal Concept lattice based on the context in Table 2.2 showing
reported application by language.

addition to the 14 papers that do not report application to a particular language this also
includes those papers reporting exclusive application to design or specification languages.

KLOC is not considered to be a “meaningful” measure for UML, OMT, and Z.

From Figure 2.4 it can be seen that there are eight papers in the survey reporting
application to systems of 100 KLOC or more, however, these actually refer to only five
different examples. The analysis of a 106 KLOC FORTRAN system is discussed in the
three papersLindig97assessing, Snelting98concapt Snelting00softwareln addition
the 100 KLOC COBOL examples reported by Kuipers and Moonduipers00typesnd
Van Deursen and Kuipers wanDeursen98identifyinglso describe the same application

example.

The largest application in the survey describes the analysis of a 1,200 KLOC
semiconductor testing tool written in C. The work by Eisenbarth, Koschke and Simon in

EisenbarthO3locating64] is an order of magnitude larger than any of the other examples

39

Godin93building
Schupp02right
BojicOOreverse
Huchard99from
Ball99concept
Ammons03debugging
EisenbarthO1aiding
Dekel02applications
ArevaloO3understanding-b
ArevaloO3understanding-a
Snelting98reengineering
Leblanc99environment

AX KLOC <10
Q @
Q
|

MAX KLOC <1000 MAX KLOG >=1
MAX KLOC <100

L
Krone94inference
Funk95algorithms
Snelting96reengineering
Snelting99reengineering

Figure 2.4: An Inter-ordinal scale based on the context in Table 2.2 using the

MAX KLOC 0.0-1200.0

T
\
\

MAX KLOC >=10

Tonella990bject
Streckenbach99understanding
Sahouri97applying
EisenbarthO1feature
Snelting00understanding
Siff97identifying

MAX KLOC >=100

MAX KLOC >=1000
O
EisenbarthO3locating

Lindig97assessing
vanDuersen98identifying
Snelting98concept
Tonella01concept
Canfora99case
Snelting00software
Kuipers00types

maximum KLOC across all programming languages for each paper.

presented in Section 5.2.10.

2.3 Support for Late-phase Activities

40

and demonstrates that FCA-based software analysis tools are capable of handling real-

world projects. An overview of the tool implementations described in these papers is

Figure 2.5 again presents the ISO12207 categorisation of the 47 survey papers, however,
the paper names are listed instead of the counts shown in Figure 2.2 . Thirty-three of the
survey papers have been classifie®afiware Maintenancapplications. Additionally, the

work of Eisenbarth et al. [62, 63, 64] has also been categoriséathiectural DesignThe

|Architectural Design: | |Detaile Design: |

Requirements Analysis: |

|Software Maintenance:

AN
Lindig95concept

Boettger01reconciling
Richards02recocase
Richards02controlled

Fischer98specification
TilleyO3towards

Duwel99enhancing Richards02assisting

Duwel98identifying (/["_ | RichardsO2representing

TilleyO3software Richards02using Ball99concept
Duwel00bridging o Andelfinger97diskursive Ammons03debugging

EisenbarthO1aiding
EisenbarthO1feature
Eisenbarth03locating

Qualification Testing:
Integration:
Installation:
Acceptance Support:
Coding: 0

BojicOOreverse

Figure 2.5: The I1SO12207 categorisation diagram from Figure 2.2 showing
the paper names.

papers by Ammons, Mandelin, Bodik and Larus [5], and Ball [11] incorporastingand

these are the only two papers in the survey to address this activity. Bojic and Velasevic [21]
discuss applications to round-trip engineering and recovering UML use-cases. Their work
has therefore also been included underReguirements Analyscategory even though it

is concerned with re-engineering existing systems.

Eisenbarth et al. describe a technique for locating the computational units within
software that actually implement a feature or functionality of interest. They combine both
static and dynamic analysis and of particular note is the application of their technique to
the 1,200 KLOC example mentioned in the previous section. A number of test cases or
“scenarios” are constructed which cover the use-cases of interest and these are treated as
the formal objects in their analysis. The computational units executed during runs of the
program are then considered as the formal attributes. The attribute contingents of object
concepts in the resulting lattice are of particular interest since they contain the program

artefacts introduced by specific scenarios.

41

The work of Ammons et al. represents one of the few existing approaches that
incorporates both formal methods and FCA. The work was briefly summarised in
Section 1.4 but essentially uses FCA to aid in the testing and debugging of temporal
specifications. Large specifications are verified using tools that check them against a
number of programs and these checks can produce hundreds or thousands of execution
traces. A concept lattice is used to cluster program execution traces together so that an
expert can assess and classify clusters of traces rather than classifying each of the traces

individually.

Ball examines test-coverage by comparing the implicational logic in the concept lattice
generated from traces extracted from test programs with dominance and post-dominance
relationships extracted by static code analysers. A computer program essentially consists
of a large number of instructions and each instruction is identified by its position within
the program. A run of a computer program producesaae listing the sequence of
instructions that were run. Two notions concerning instructions, with respect to a collection
of traces, are importantdominanceand pre-domination An instructionx dominates
another instructiog if any trace prefix that ends grcontains. In other wordscdominates
y if the only way to executg is to have already executed Similarly, x post-dominatey
if any trace postfix starting witkt also contain. In other words post-dominateg if any
execution ofy indicates thak will subsequently be executed. Any additional implications
in the concept lattice are also considered to see if they can be removed by the introduction

of a new test.

Bojic and Velasevic report a similar approach but additionally the artefacts within the
attribute contingents are arranged as UML diagrams using a UML reverse engineering
tool. In this way the specific parts of the software architecture related to use-cases can be
extracted and viewed. The capability is particularly useful in the preparation of traceability
in the software engineering process whereby aspects of the system architecture can be

traced back to requirements.

Interestingly, the papers by Ammons et al., Ball, Bojic and Velasevic, and Eisenbarth et

al. all deal with the dynamic analysis of software behaviour. Across the collection of papers

42

a wide variety of inputs for analysis are used including source code, class files, profiler
output, system descriptions and documentation. The choice of formal objects include code
segments, language features, and the names of packages, classes and methods.

The remaining 27 papers can be broadly categorised into three groups:

e analysis of software configurations
e modularisation of legacy code
e transformation of class hierarchies

and these approaches are summarised in Sections 2.3.1, 2.3.2, and 2.3.3 respectively.

2.3.1 Analysis of Software Configurations

Snelting [175, 176, 122, 74] used FCA to analyse preprocessor commands in legacy C
programs including “Xload” and “RCSedit” in order to examine the configuration structure.
The formal objects are code fragments included by the preprocessor commands, while the
formal attributes are disjunctive expressions governing the inclusion of the code fragments.
The concept lattice is constructed and the notion of an interference is introduced. An
interferencas a meet-reducible concept with a non-empty extent. Two types of undesirable
interference are identified, those corresponding to illegal configurations — for example, an
interference between XWINDOWS and DOS — and those corresponding to orthogonal
attributes — for example, an interference between a variable related to the graphics
subsystem and one related to the operating system.

In order to make the resulting concept lattices more managehbleontal
decompositionsare introduced [74]. The decompositions are based on the idea of a
horizontal sum where the constituent elements of the sum are usually disjoint. However,
experiments with legacy systems revealed that few configuration lattices can be directly
decomposed into a horizontal sum of disjoint sub-lattices. In order to simplify the
configuration structure the notion oflainterferenceis introduced. Ak-interference is
a collection ofk meet-reducible incomparable concepts whose down-set removal yields a
decomposition into a disjoint horizontal sum. The concepts involved inlsutierferences
are of particular interest since they are most likely interferences between orthogonal aspects

of the system configuration.

43

Other techniques to simplify the concept lattice include limiting the nesting depth
of preprocessor commands considered and merging rows whidr Oy fewer thark
elements. These techniques are of use when the objective is to get an overview of the

configuration structure present in a software program.

2.3.2 Modularisation of Legacy Code

Legacy programs written in languages where access to common data structures is normally
the case, e.g. FORTRAN and COBOL, have been considered by Van Deursen and
Kuipers [216], Kuipers and Moonen [123], Lindig and Snelting [132], and Canfora,
Cimitile, De Lucia, and Di Lucca [34].

Van Deursen and Kuipers compare the use of formal concept analysis for grouping
fields within a large legacy COBOL program to that of hierarchical clustering. Hierarchical
clustering involves the definition of a distance metric between COBOL procedures,
extending the metric to sets of procedures, starting with every procedure in its own cluster
and then repeatedly merging the two closest clusters to produce a binary tree of clusters.
This approach is generally criticised because it can yidl@mint inputs for the same data
if several clusters are equidistant andfelient results are obtained for slightlyfférent
distance metrics. In contrast, the results produced by FCA are always the same, not
dependent on the definition of a distance metric, and were much closer to that produced
by software engineers familiar with the legacy system. Since the objective was to focus
on domain specific procedures rather than those performing system functions, procedures
having a high degree of fan-in were judged as being system procedures and were discarded.

This judgement was controlled by an operator set threshold.

Canfora et al. follow a similar approach but are interested in organising a legacy
COBOL system into components suitable for distribution via the Common Object Request
Broker Architecture (CORBA). They consider programs and their use of files representing
relational tables. The formal context was pruned by removing objects and attributes in
isolated concepts — those concepts that are directly below the top concept and directly

below the bottom concept and therefore do not have any intent or extent intersection with

44

any other concepts. Relational table files having the same structure were also merged. This
case arises when several files are used to perform some operation on a table, for example,
sorting. Programs that used only a single file were also removed. Canfora et al. apply their
rules until no more formal objects or formal attributes can be removed. The result was a
concept lattice that was almost horizontally decomposable — in the sense of Snelting et al.
— into four domain areas, except for a number of interferences corresponding to operations
involving more than one domain area.

The task of deriving object-oriented models from legacy systems written in C has also
been considered by Sahraoui et al. [166]f 8hd Reps [171], and Tonella [203]. The
general approach is to consider C functions as formal objects and the attributes as either
commonly accessed data structures or fields within commonly used structures.

Both Sitf and Reps, and Tonella are concerned with re-organising the functions into a
different, perhaps more fine grained, module structure based on the access of functions to
either common data structures [203], or fields within commonly accessed data types [171].

In Tonella’s approach a modular structure results from a partitioning of the formal
objects. Candidate partitions are generated from a choice of concepts having pairwise
disjoint extents. Each formal attribute is then assigned to the chosen concept that has the
largest number of objects with that attribute, i.e. for attriboteve find concept that
maximisesnt N Ext(c) and assigmm to that concept. One partitioning set of concepts is
considered better than another if the number of objects having an attribute not assigned to
their concept (i.e. the concept from the chosen set containing the object) is smaller and the
number of concepts is larger. The approach searches over the possible choices of concepts

seeking to optimise these two criteria.

2.3.3 Transforming Class Hierarchies

Snelting [177], and Snelting and Tip [178, 179, 180] explain a mechanism to re-organise
class hierarchies using FCA. Their aim is to find imperfections in the design of the
hierarchies based on how the class is actually used by applications. Variableés-in C

are taken as formal objects and methods and fields of the objects to which the variables

45

refer are taken as formal attributes. A variable is associated with a field or method if that
variable is used to access the method or field. A number of rules are employed to account
for assignment between variables and conservatively account for dynamic dispatch. The
main focus of investigation is the objects that exist during a run of a program and Snelting

and Tip access these using static analysis and via the medium of variables.

Schupp, Krishnamoorthy, Zalewski and Kilbride [168] consider class hierarchies in
the Ct+ Standard Template Library (STL). They have classes as formal objects and
documented properties of the classes as formal attributes. The notions of “well abstracting”,
“lacking orthogonality” and “lacking refinement” are then introduced to describe class
libraries. However, rather than inspecting various aspects of the structure they attempt
to construct the whole concept lattice, render it and then draw conclusions. Inspection
of aspects of the STL reveal a very regular structure. An example presented by Tilley,
Cole, Becker and Eklund [200] shows three complementary pairs of attributes: unique and
multiple associative, sorted and hashed, and pair and simple associative. Complementary
attributes are related bgxclusive o— in other words all objects have exactly one of the

two attributes.

Godin and Mili [87] consider a context where the formal objects are messages (methods
in Smalltalk) and formal attributes are classes. The aim of their approach is to build
analysis-level class hierarchies that can be maintained as the class evolves through design
and implementation phases. They consider concepts having an empty attribute contingent,
i.e. those not labelled by a class, as new class candidates. Godin, Mili, Mineau, Missaoui,

Arfi, and Chau [82] further incorporate static call graph information into the concept lattice.

While Leblanc, Dony, Huchard and Libourel [126] describe an environment for
re-engineering class hierarchies, Huchard and Leblanc [96] consider a concept lattice
generated with classes as formal objects and attributes derived from method signatures.
Their approach thereby includes information about parameter types and return values. Each

concept is considered as a candidate for a Java interface.

Huchard, Roume and Valtchev [97] address the problem of representing and analysing

data via FCA where relationships exist between the formal objects. The binary inter-object

46

relationships are represented byedational context family Their approach is applied
to UML class diagrams representing both classes and association relationships between
classes where the classes are considered as the formal objects and the variables and methods
as attributes.
Tonella and Antoniol [204] attempt to recover design patternstih €burce code using
a context in which the formal objects aretuples (in practice triples are used) whose
elements are types in the software, and formal attributes are triples of the itgrm (
wherei andj are indexes into tha-tuple andr is a relation type. For example, an object
(A, B, C), being associated with an attribute 21derived— from) would indicate tha# is
derived fromB. Tonella and Antoniol discover as one of the concepts in the concept lattice
the well known “adapter pattern”.
The work of Aevalo [8], and Aevalo, Ducass and Nierstrasz [9] is also concerned
with detecting patterns in software via FCA. While their work is similar to that of Tonella
and Antoniol they apply the approach to Smalltalk and also take into account behavioural
information related to the derivation of subclasses. These behavioural dependencies result
when a method is added, modified, overridden or removed in a subclass.
While not actually related to the transformation of classes, Dekel’s paper [45] analyses
Java classes to suggest source code reading order for code review and inspection purposes.
Having provided a brief overview of the late-phase approaches, the existing techniques

that support early-phase software engineering activities are now discussed.

2.4 Support for Early-phase Activities

While the bulk of the papers in the survey report applications to late-phase activities, 14

of the 47 papers are concerned with early-phase software engineering. The techniques
described in 27 of the 33oftware Maintenancpapers also necessitate design reviews or

at least proposed changes to the design of legacy systems and as such they have also been
categorised undddetailed Design This section will present those approaches that do not

fall under theSoftware Maintenanceategory, that is those approaches that apply to the

development of new systems rather than the re-engineering of existing systems. The main

47

approaches from these 14 papers are summarised in the following sections.

2.4.1 Requirements Analysis

Andelfinger’s thesis inAndelfinger97diskursivgs] describes a discursive environment

for requirements gathering based on Habermas’ philosophical theory of “communicative
rationality” — a discursive form of collective reasoning. Habermas described a somewhat
idealistic discursive environment that attempts to make any agendas during negotiation
obvious and considers all viewpoints equally. Andelfinger presents this environment as a

way of addressing the so-called “pragmatic gap” between the views of users and developers.

Within the thesis FCA is used as a question answering and discussion promotion tool.
The value of unlabelled concepts is highlighted as it promotes questions about what is
missing which may be indicative of incomplete requirements. While the three case studies
presented by Andelfinger are not directly related to software engineering they parallel
standard problems in requirements gathering. It is interesting to note that the second
case study describes gathering requirements for an FCA-based retrieval system for the
library at the Centre of Interdisciplinary Technology Research (in German the “Zentrum

fur Interdisziplirare Technikforschung”(ZIT)) [161].

2.4.2 Use-case Analysis

Use-cases are a tool used in requirements gathering and analysis where a task is
described from a certain perspective or role. Typically these descriptions are written
in natural language although sometimes controlled vocabularies are uséitgerB

and Richards et al. describe a technique to reconcile use-cases in the papers:
Richards02representing156], RichardsO2controlled[157]. Richards02using[159],
BoettgerOlreconciling24], Richards02assisting155] and RichardsO2recocasg§l58].

Their technique reconciles multiple use-cases written Wiemdint stakeholders. The
approach could be used by system designers to identify both the overlap between use-cases

and points of conflict or dierence between them.

48

Their tool RECOCASE (RECONCciling CASE tool) exploits a Prolog answering system
called ExtrAns and uses LinkGrammar — an English parser that uses link grammar theory
— to convert sentences into syntactically legal “flat logical forms” (FLFs). A context is
produced where the sentences are the objects and the FLFs are broken into word phrases
which are treated as the attributes. A number of the papers also report a brief study of
line diagram comprehensibility for comparing use-case descriptions using second year
university Analysis and Design students.

The work of Diuwel in Duwel99enhancing[56] and DOiwel and Hesse in
Duwel00bridging[59], andDuwel98identifying58] attempts to identify class candidates
in use-cases. The use-cases themselves are considered as objects in a formal context and
nouns identified within the text are considered as attributes. A case study that contrasts
this approach with an existing design for a mass-transit railway system is reported in

TilleyO3softwarg201] and the details are presented in Chapter 3.

2.4.3 Software Component Retrieval

In Lindig95concept[128] Lindig describes a retrieval system that could be used for
retrieving software components from a library indexed by keywords. The formal context is
constructed using the components as objects and the keywords as attributes. An example
based on 1,658 online documents relating to Unix commands is presented. The retrieval
system provides a query by refinement interface in which a boolean ddies/mapped
to the formal conceptH, B"”). The lower cover of this concept within the lattice is then
offered as a set of possible refinements to the user. Retrieval applications are also discussed
in Godin95applyind84]. Outside of the software engineering domain FCA has also been
used for more general information retrieval applications, for example the work of Carpineto
and Romano [35] for text document retrieval and the ZIT library retrieval system discussed
by Wille and Rock [161].

Fischer builds on the component retrieval work of Lindig in the paper
Fischer98specificatiorf70]. The approach combines formal methods and FCA for

browsing and navigating a software component library. Components in the library

49

are associated with formal specifications that capture their behaviour in the form of
axioms describing pre-conditions and post-conditions. The formal specifications are
then used instead of simple keyword searches to retrieve components based on explicit
properties required for the components selection or based on implicit similarity with other

components.

A formal context is constructed using the component specifications as both the objects
and attributes. Additionally, functions or partial functions within the specifications are
also considered as formal attributes. Automated theorem provers are used to deduce valid
relations between pairs of components over a numberfidrdnt relation types including
refinement and matching. A formal concept lattice is then computed that is used as a
structure for navigating and retrieving components from the library. The resulting lattice
can also be used to improve the library. Unlabelled concepts and extents containing
intuitively “unexpected” components may indicate missing attributes or features that can
be added to the library.

The author’s own work reported ifilleyO3towardg199] also explores the application
of formal methods, in particular formal specification in Z, and FCA. FCA is used
to facilitate the visualisation and navigation of Z specifications and a tool prototype is
discussed. The approach and implementation are detailed in Chapter 4 and Chapter 5

respectively.

The work shares a number of parallels with that of Fischer described above. For
example, both approaches provide browsing and navigation over specifications describing
pre-conditions and post-conditions. However, while both Fischer and Lindig used the
concept lattice as a navigation structure, the work described here also uses line diagrams
to aid in a user’s understanding of a formal specification. Fischer experimented with
lattice visualisation but found the underlying concept lattice too large and complex for
presentation. These problems are addressed here via a number of abstraction mechanisms

which are described in Section 4.3.

50

2.5 Summary of Results

The preceding sections of the chapter have provided an overview of FCA applications
to software engineering via a paper survey. From the initial ISO12207 categorisation
of the papers it is evident that the majority describe software maintenance and re-
engineering applications and future research is likely to remain in this area. In these
later stages the software is already highly structured and therefore more amenable to
analysis than in the earlier phases where things are less well-defined. However, the survey
does include a number of papers reporting applications to the early-phase approaches of
requirements analysiand architectural design None of the papers suppatceptance
support, integration, coding, installatioor qualification testingand the papers by Ball,

and Ammons et al. stand out as the otdgtingrelated applications.

Applications for the approaches described in the papers cover a range of procedural,
object-oriented and design languages. The procedural applications are typically looking at
ways of re-engineering the code in a modular or object-oriented fashion by exploiting the
subconcepsuperconcept structure inherent in the concept lattice. However, the common
thread running through all the papers is the use of FCA to extract understandable structures
that organise the artefacts of software systems.

Eight of the papers describe the use of FCA-based approaches to analyse or re-engineer
applications of 100 KLOC or more. The largest of these examples, reported by Eisenbarth
et al., is the analysis of 1,200 KLOC of control software for a semiconductor testing tool.
These papers demonstrate applicability and scalability beyond mere toy examples to real

world software engineering problems with tool support.

2.6 FCA as a Literature Survey Tool

While the survey analysis in the first half of the chapter described attributes that were
specific to the domain of software engineering the remainder of the chapter examines two
attributes that apply to academic papers in general. Section 2.6.1 explores collaboration

between authors within the set of survey papers while Section 2.6.2 explores the “impact”

51

Nierstrasz
Ducasse

Figure 2.6: Lattice showing collaboration between authors within the set of
survey papers. Note that only papers where the authors have worked with
different co-authors appear.

of the papers based on the citations within the papers. An existing citation impact
mechanism — the Researchindex digital library — is also introduced in Section 2.6.2 for

comparison.

2.6.1 Author Collaboration

A summary of collaboration between authors within the set of survey papers is presented in
Figure 2.6. This concept lattice represents those authors who have collaborated on papers
with different authors. There are 13 papers at the top of the lattice whose authors only
appear once across the 47 papers or who have only worked with the same co-authors. Only
the size of the object contingent which represents the number of papers is shown for each
concept.
The diagram can be horizontally decomposed into eight sub-lattices which indicates

that research has been performed rather independently within these research groups. The
largest of these groups are led by Snelting, Huchard, Godin, Boettger and Richards, and

Hesse and there are no joint publications across these groups. Each of the structures below

52

these researchers represent collaboration across multiple papers containing at least five

different authors with the common author, or authors, appearing at the top.

Snelting’s collaboration with a number offtérent authors is the likely reason for
the large number of language applications recountesni@lting00softwarteSnelting has
authored or co-authored ten of the papers — the highest number of any author in the
survey. Three of these papers are co-authored with Tip and ®heéing98reengineering,
Snelting99reengineeringnd Snelting0Ounderstandingepresent updated versions of the
same paper it can be seen from Figure 2.3 that each paper includes examples with

applications to dferent languages.

While the structure below “Snelting” has a high degree of “fan-out” the structures
beneath “Huchard”, “Godin”, and “Boettger” are more linear. The papers below
“Boettger and Richards”, for example, result from common subsets of authors across
a number of papers that are typically reportingfetient aspects of the same work.
BoettgerOlreconcilingncludes Schwitter and Mdl among the authors and this paper

provides details of the ExtrAns tool which they implemented [170, 169].

The 13 papers represented by the count at the top of Figure 2.6 do not share any
intersection of authors with other papers in the survey set. They have been omitted to
increase the readability of the line diagram. These papers represent concepts that are
only connected to the top and bottom elements of the lattice. Alternatively, they can
be considered as sub-lattices resulting from horizontal decomposition that contain only

a single concept in addition to the top and bottom elements.

Figure 2.7 presents an image produced by Snelting’s KABA tool [189, 177] showing
horizontal decompositions in Java code. The image is taken $oefting00softwareT he
problem of displaying diagrams with a high degree of fan-out at the top and high fan-
in at the bottom is overcome byfectively turning the top and bottom elements of the
lattice into rails. This style of display would also be a suitable representation for the author

collaboration in Figure 2.6.

53

EENNNENNNEN
L I)) _
. [I)

[[)
o"_‘o [] e e o
¢ o s 00 o

Figure 2.7: Image produced by Snelting’'s KABA tool showing horizontal
decompositions in Java code. This image appears as Figure 8 in
SneltingO0softwargl77].

2.6.2 Citation Patterns

As a whole the papers included in the survey embody the ideas of a particular community
or sub-culture — the community of researchers applying FCA to software engineering. In
addition to identifying collaboration structures within this community it is also possible to
gain some insight into the perceived “impact” or influence of a particular paper. The citation
patterns within the set of survey papers provide some measure of a paper’s influence, where

papers with the most impact are considered to be highly cited.

Figure 2.8 presents a line diagram showing the transitive closure of citations within
the set of survey papers. If a pafrcites papeiC, and papelA cites papeB then A
transitively citesC. For example, the pap&all99conceptites among others the paper
Sif97identifyingwhich in turn citeslindig97assessingSo Ball99concepindirectly cites

Lindig97assessingdrhe algorithm to compute the closure is discussed later in this section.

The attribute labels linked to the top of the concepts represent papers which have been
cited by other papers within the survey collection while the object labels linked to the
bottom of concepts represent papers which contain citations. At the top of the line diagram
there are 9 papers listed and these papers have not cited any of the other literature within
the survey set. There are a number of explanations for the location of these papers. The
earliest papers in the surv&ypdin93buildingandKrone94inferenceby definition have no

earlier work to cite within the survey collectioAndelfinger97diskursivis a paper written

54

Godin93building
Krone94inference
BoettgerO1reconciling
Schupp02right
Richards02controlled
Ammons03debugging
Richards02representing
Andelfinger97diskursive
TilleyO3towards

Krone94inference|

Boettger01reconciling
@)
Lindig95concept|

Richards02recocase
Richards02assisting
| Lindig95concept|

Huchard99from
Godin95applying
Leblanc99environmen

Godin95applying

Godin98design

Snelting98concept]

Snelting98reengineering

Godin93building

Siff97identifying
Sahouri97applying

Snelting96reengineering

| Snelting96reengineering
Funk95algorithms

I Lindig97assessing

Lindig97assessing

5uwe|99enhancin g
Duwel98identifying|

Funk95algorithmsg

Tonella99object
BojicOOreverse
Sahouri97applying|
Snelting98concept|
Siff97identifying

Snelting98reeng ineerin

vanDuersen98identifying
Ball99concept

Dekel02applications
Fischer98specification

ArevaloO3understanding-
Snelting99reengineering

Ball99concept

Duwel98identifying - __
@)
DekeloZapplicatons Duwel0Gbridging -
\ ArevanO3understanding—d \ Sneltingoounderstandind

Duwel00bridging
Tilley03software| \

SneltingOOunderstanding__\ . __
Huchard02whe

TonellaO1concept] \ \
Eisenbarth03locating \\

Figure 2.8:
within the set of survey papers.

Godin98design|
AD

Snelting00software

Snelting00software|
) I
{Kuipers00types

Formal concept lattice showing transitive

55

EisenbarthO1feature
Leblanc99environment
Eisenbarth0O3locating
ArevaloO3understanding-b
/| Kuipers00types Schupp02right

EisenbarthO1feature|
EisenbarthO1aiding

Q
Richards02using

\ SneltingQQreengineerind

vanDuersen98identifying
) 7

Canfora99case Richards02assisting
Huchard99from
TilleyO3towards
Fischer98specification
Huchard02when
TilleyO3software
EisenbarthO1aiding
Richards02representing
ArevaloO3understanding-a

Streckenbach99understandin
Tonella01concept

Streckenbach99understanding
Tonella990object
Andelfinger97diskursive
Richards02using
Richards02recocase
Duwel99enhancing
Richards02controlled
Ammons03debugging
BojicOOreverse

closure of citations

in German and the list of citations was unavailable. The remaining papers all cite the work
of Wille as FCA background but do not build directly on any of the work described in the
other papers.

At the bottom of the diagram are 20 papers which are not cited within the survey
collection. Papers with earlier publication years appear to have been ignored by the
community while more recent papers may not have been around long enough to be cited
yet. Andelfinger97diskursivalso appears in this list and this could be because it is the only
German language paper in an otherwise English language set.

Papers with the most impact appear at the top of the diagram with long chains (i.e.
containing many concepts) beneath them. It can be observed that most of the work is
nearly linear in terms of citations which reflects some coherence within the community.
For example, Snelting and Godin cite each other’s work before large forks appear in the
structure.

The structure down the right hand side of the line diagram is also interesting. The
papers by Bttger and Richards et al. either contained no citations within the survey set
or they cited their own work iBBoettgerOlreconciling RichardsO2usinghowever, cites

Snelting00softwareshich connects their work back into the main “trunk”.

Computing the Citation Closure

The algorithm used to compute the closure of citations within the set of survey papers is

presented in Figure 2.9. The algorithm takes as input a cofitexepresenting citations

of other papers in the surve)G is the set of papers and is the set of cited papers.

Here G = M. For example, the papeBall99conceptin Table 2.3 cites the papers

Sif97identifying, Snelting96reengineeriagdSnelting98reengineering\Note that uncited

papers have been excluded from the attribute set to increase the readability of the table.
The outer loop of the algorithm contains a terminating condition. The cofdgxt

stores a copy of the context at the start of each iteration and if no further changes occur then

the algorithm terminates arid contains the citation closure. This is a simple adaptation

of the algorithm used for computing the closure on a set of functional dependencies during

relational database normalisation [65]. The next two loops iterate along each row and if

56

Snelting96reengineering
Snelting98reengineering
Snelting99reengineering
Snelting00software
Snelting0Ounderstanding
TonellaO1concept
vanDeursen98identifying

BoettgerOlreconciling
Snelting98concept

Ball99concept
Canfora99case
Dekel02applications
Duwel98identifying
Duwel00bridging
Funk95algorithms
Godin93building
Godin95applying
Godin98design
Krone94inference
KuipersO0types
Lindig95concept
Lindig97assessing
Sahraoui97applying
Siff97identifying

Ammons03debugging
Andelfinger97diskursive
ArevaloO3understanding-a
ArevaloO3understanding-b X X
Ball99concept X | X X
BoettgerOlreconciling
BojicOOreverse
Canfora99case
Dekel02applications X X X | X
Duwel98identifying
Duwel99enhancing
Duwel00bridging X X
EisenbarthOlaiding X
EisenbarthO1feature
EisenbarthO3locating X X
Fischer98specification
Funk95algorithms
Godin93building
Godin95applying
Godin98design
Huchard99from
Huchard02when
Krone94inference
Kuipers00types X X | X[X|X X X
Leblanc99environment X
Lindig95concept X
Lindig97assessing X X X
Richards02assisting X
Richards02controlled
RichardsO2recocase X
Richards02representing
Richards02using X X
Sahraoui97applying X X X
Schupp02right
Siff97identifying
Snelting96reengineering
Snelting98concept X
Snelting98reengineering X
Snelting99reengineering X | X X
Snelting00software X
Snelting0Ounderstanding X X X
Streckenbach99understanding
TilleyO3software X
TilleyO3towards
Tonella990bject X X X
TonellaO1concept X X
vanDeursen98identifying X X X | X

X
X
X

X

X
X

X
X
X

X
X

X
X[X[X[X|X|X]|X

X[X[X[X
X[X[X[X
X
X[X[X[X]|X
X

X[X|[X|[X]|X
X

X[X|X[X

X
X
X

X | X|X[X
X[X[X|[X|X|X
X

X[X[X|[X|[X|X
X | X|X|X|X

X
X[X[X|[X[X

X

X

X
X
X
X

Table 2.3: Formal context showing direct citations within the set of survey
papers. Here the objects are the papers and the attributes are the paper citations.
Note that uncited papers have been excluded from the attribute set to increase
table readability.

57

(p,cp) € | then papemp is citing papercp. The innermost loop traverses the (indirect)
citationsic within the cited papecp. The citations for papgp are then updated if there is
a citationic in papercpthat is not already in the contept

The closure computed for the direct citations in Table 2.3 appears in Table 2.4 and this
Is the context represented by Figure 2.8. While all of the survey papers used to compute
the citation closure were included in the context they have been excluded from the attribute
sets in Tables 2.3 and 2.4 to increase table readability.

Although the closure context was computed automatically the direct citation context
used as input to the closure algorithm was constructed by hand. There is, however, an

alternative — the automatically generated citation counts available via Researchindex [146].

The Researchindex Digital Library (CiteSeer)

Researchindex is a scientific digital library project that was originally a demonstration site
for the NEC Research Institute’s CiteSeer software. CiteSeer was designed to automatically
gather and index citations from papers published on the World Wide Web (WWW).
Computer Science literature was chosen as the domain for the project and the library now
claims to be “Earth’s largest free full-text index of scientific literature”. Over 530,000
documents written by more than 602,300 authors are indexed by the system.

Citation indexing links articles based on a bibliography of cited articles or references
within one paper being matched against the titles of other documents within the database.
This process is automated in Researchindex and both papers cited within a document and
papers citing a document can be retrieved. This form of document linking also allows
research trends over time to be investigated. Papers cited by a document reflect the
time before publication while papers citing a particular document represent the time after
publication.

The Researchindex digital library is constructed autonomously and papers are being
continually added to the database. Search results from Web search engines containing
terms like “papers”, “publications” and “postscript” are used to find potential papers for
indexing. Papers in Postscript and PDF format are downloaded from the Web and converted

to text. To check if the document is a research publication a search of the text is made for

58

Inputs
LetK := (G, M, 1) be a context containing direct paper citations
Variables
Let Kog := (@, @, @) be an initially empty context
Letp be a survey paper
Letcpbe a cited paper
Letic be an indirect citation
Outputs
Let K be an updated context containing the closure of paper citations
Algorithm
WHILE K # Kgq LOOP
Kog := K
FOR eachp € G LOOP
FOR eachcpe M LOOP
IF (p,cp) €| THEN
FOR eachic e M LOOP
IF (cp,ic) € | and p,ic) ¢ | THEN
I :=1U(p,ic)
END IF
END LOOP
END IF
END LOOP
END LOOP
END LOOP

Figure 2.9: Algorithm to compute the citation closure within the set of survey
papers.

59

Snelting96reengineering
Snelting98reengineering
Snelting99reengineering
Snelting00software
Snelting0Ounderstanding
TonellaO1concept
vanDeursen98identifying

BoettgerOlreconciling
Snelting98concept

Ball99concept
Canfora99case
Dekel02applications
Duwel98identifying
Duwel00bridging
Funk95algorithms
Godin93building
Godin95applying
Godin98design
Krone94inference
Kuipers00types
Lindig95concept
Lindig97assessing
Sahraoui97applying
Siff97identifying

Ammons03debugging
Andelfinger97diskursive
ArevaloO3understanding-a
ArevaloO3understanding-b X X
Ball99concept
BoettgerOlreconciling
BojicOOreverse
Canfora99case
Dekel02applications
Duwel98identifying
Duwel99enhancing
DuwelO0bridging X
EisenbarthOlaiding X X
EisenbarthO1feature
Eisenbarth03locating X X
Fischer98specification
Funk95algorithms
Godin93building
Godin95applying
Godin98design
Huchard99from
Huchard02when X X
Krone94inference
Kuipers00types X X
Leblanc99environment
Lindig95concept X
Lindig97assessing X X X X
Richards02assisting X
Richards02controlled
RichardsO2recocase X
Richards02representing
Richards02using X | X X | X[X|[X
Sahraoui97applying X[X | %
Schupp02right
Siff97identifying
Snelting96reengineering
Snelting98concept
Snelting98reengineering
Snelting99reengineering
Snelting00software X
Snelting0Ounderstanding X
Streckenbach99understanding
TilleyO3software X | X
TilleyO3towards
Tonella990bject
TonellaOlconcept
vanDeursen98identifying X | X | X%

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X

X
X
X
X

X
X
X
X
X
X

X
X

X
XX [X[X|X|X|X[|X[|X]|X[|X

X[X[X[X
XX X[X|X|X|X|X|X|X|X

XIX[X[X[X|X]|X|X]|X]|X

X[X|[X|[X]|X

X[X|[X[X]|X
X|IX[X[X|X|X|X|X|X|X|X

XIX[X[X[X|X]|X|X]|X]|X

X[X|[X|[X]|X
X[X|[X[X]|X
X[X|[X|[X]|X
X[X|[X|[X]|X

X

X

X

X[X|X[X

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X

X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X
X

XX | X[X|X]|X]|X
X[X[X[X|X]|X]|X
X[X[X[X|X]|X]|X
X[X[X|[X]|X

X[X|X|[X|X]|X]|X|X]|X
XX X[X|X]|X|X|X]|X
X[X[X[X|X]|X]|X
X[X[X[X|X]|X]|X
X[X[X[X|X]|X]|X
X[X[X[X|X]|X]|X
X[X[X[X|X]|X

X[X[X|[X]|X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

Table 2.4: Formal context representing closure of citations within the set of
survey papers. Note that uncited papers have been excluded from the attribute
set to increase table readability.

60

a bibliography or reference section. The citations in the bibliography are then exploited
for document linking using a process known as Autonomous Citation Indexing (ACI) [81].
ACI works by automatically matching the citations contained in the bibliography section
to the titles of other documents in the Researchindex database. There are ffeneyndi
citation styles and the system must be able to recognise variations that refer to the same
document.

Researchindex also classifies some documents as being eaitti@rities or hubs
Authorities are documents that are considered to be authoritative because they are highly
cited by other papers. Hubs are documents, typically survey papers, that cite a large number
of authorities in a particular area. They provide a good point of introduction to the literature
in a particular field. With respect to Figure 2.8 authorities would appear as attributes at the
top of a long chain because they are highly cited, while hubs are likely to appear as objects

at the bottom of long chains because they contain many citations.

2.7 Comparing Paper Impact via Citation Count

Table 2.5 presents a summary of citation counts from Researchindex for the 47 survey
papers in July, 2003. The table also includes the corresponding count for the number of
direct citations from the context in Table 2.3 and the citation closure count from Table 2.4.
The papers are sorted in descending order of Researchindex count and then alphabetically
where two or more papers have the same count.

The table contains a number of interesting features. First, it can be seen that the
count of citations under closure on its own is not a meaningful measure. For example,
Funk95algorithm®nly contains 3 and 4 citations for the Researchindex and direct citation
counts. However, by virtue of the fact that the paper was published in 1995 it has a count
of 29 citations under closure.

It is also interesting to note that althougdtischer98specificatiorappears to have
been ignored within the set of survey papers it has been cited 10 times by papers in
the Researchindex database. Conversely, the case also arises where there are direct

citations within the survey collection but none recorded by Researchindex. For example,

61

Researchindex Direct Closure

Paper Citations Citations | Citations
Lindig97assessing 29 21 28
Krone94inference 27 16 33
Siff97identifying 27 17 26
Snelting98reengineering 24 17 20
Snelting99reengineering 24 3 8
Godin93building 23 10 30
Snelting96reengineering 20 15 30
vanDeursen98identifying 17 6 7
Snelting98concept 16 21
Lindig95concept 12 31
Ball99concept 11 8
Fischer98specification 10 0
Sahraoui97applying 8 26
Snelting00software 5
Godin95applying 27
Godin98design 15
Canfora99case 3
Funk95algorithms 29
Kuipers00types 3

EisenbarthOlaiding
Tonella990bject
EisenbarthOlfeature
Huchard99from
Richards02controlled
Snelting0Ounderstanding
Ammons03debugging
Andelfinger97diskursive
ArevaloO3understanding-a
ArevaloO3understanding-b
BoettgerOlreconciling
BojicOOreverse
Dekel02applications
DuwelO0bridging
Duwel98identifying
Duwel99enhancing
EisenbarthO3locating
HuchardO2when
Leblanc99environment
Richards02assisting
Richards02recocase
Richards0O2representing
Richards02using
SchuppO02right
Streckenbach99understanding
TilleyO3software
TilleyO3towards
TonellaO1concept

OOO| R PRI PN N W W W o
OOO|O|O|O|O|O|O|O|O|O|O| R PP OWO|IO|O|O| P O|O|O| P O|W| AW U1 N N U1 O| W w|

OOO|O|O|O|O|O|O|O|O|OON| R P OWOoOO Ok O|o|oO| O

Table 2.5: For each of the survey papers this table shows the number of
citations reported by Researchindex, the number of direct citations within the
set of papers and the total number of citations after computing the citation
closure.

62

BoettgerOlreconcilingontains 3 direct citations but none within Researchindex. There are

a number of possible explanations for these values. First, Researchindex relies on search
engine queries to locate papers and the paper or papers that cite it may not be visible. This
is one of the limitations of autonomous citation indexing — not all papers are available on-
line and some may be hidden behind services that require a subscription for full-text access.
Alternatively, it could also be the case that the paper is in the Researchindex database but

the referencing papers are not, or they may be ignored because they are self citations.

As might be expected, for the 10 most highly cited papers according to Researchindex
there is a reasonable correspondence with the ordering based on direct citations. However,
a major diterence appears in the values fmelting99reengineeringWhile this appears
to be a case where Researchindex has confused the fpaisig98reengineeringnd
Snelting99reengineeringhis is also a common occurrence within the literature. A
number of preliminary and expanded versions of Snelting and Tip's “Reengineering
Class Hierarchies Using Concept Analysis” paper have been published and there is
some inconsistency in terms not only of citation details but also for the year of
publication. Ignoring this inconsistency, it can be seen that 6 of the top 10 most
highly cited papers are either authored or co-authored by Snelting. These 6 papers:
Lindig97assessind<rone94inferenceSnelting98reengineerin@nelting99reengineering
Snelting96reengineering@ndSnelting98concemll appear along the main “trunk” of the

closure diagram in Figure 2.8.

While the citation closure lattice provides a useful view of the survey literature, a
citation count based on closure is meaningless. Alternatively, there may be other measures
based on chain length or the number of papers in the extent that may also provide some

insight into a paper’s impact.

The Researchindex digital library represents an obvious path to automate the
construction of a citation context, however, there are two immediate impediments. First,
initial experiments indicate that the HTML returned by Researchindex queries does not
validate using standard HTML tools so a custom parser would be required. While this is

only a minor technical challenge the second impediment is Researchindex’s “no robots”

63

policy which an automated approach may violate [145].

2.8 Conclusion

This chapter has presented a literature survey of 47 academic papers reporting software
engineering applications for FCA. The first half of the chapter provided an overview of
the papers using what are essentially conceptual scales based on 1SO12207 categorisation,
target application language and target application size.

The majority of the reported work has been in the areas of detailed design and
software maintenance where FCA has been applied to object-oriented re-engineering and
class identification tasks. While these late-phase approaches could be seen as obvious
applications because of the specialisgi@meralisation relationship between the concepts
in a concept lattice, the range offidirent formal objects and attributes used is surprising.
These range from documentation, use-cases and compiled code through to execution
traces. Other novel applications have included support for test-coverage analysis. While a
number of papers describe some early-phase approaches there are still a number of as yet
untouched application areas includiacceptance support, integration, coding, installation
andqualification testing

The second half of the chapter introduced two further analyses of the literature which
provided an insight into authorship groups, citation patterns and the impact of papers
within the collection of survey papers. Eight main research groups are identified among
the authors and of particular note is the impact of Snelting’s work. This is most clearly
seen in the application language, author collaboration and citation closure diagrams.

While the attributes analysed in the early sections of the paper were specific to software
engineering the collaboration and citation diagrams relied on attributes which are common
to all academic literature. Although unpublished, a web-page by Kalfoglou [113] reports
similar work to classify journal papers using twdfdrent classification schemes as well as
an example exploring the changing membership of a conference programme committee.

Having demonstrated that the majority of applications support late-phase activities —

and more specifically software maintenance — the remainder of the thesis explores FCA

64

applications to early-phase activities and in particular applications to formal specification.
The next chapter presents a case study applyiagdDs approach for identifying class

hierarchies for a system specified using the Object-Z formal specification language.

65

Chapter 3

Class Hierarchy Identification from Use-case
Descriptions

As discussed in Chapter 2, one of the existing application areas for FCA in software
engineering is the identification and maintenance of class hierarchies for both new
and legacy applications. This chapter describes an exercise in object-oriented software
modelling where FCA is applied to a formal specification case study using Object-Z. In
particular, the informal description from the case study is treated as a set of use-cases
from which candidate classes and objects are derived. The resulting class structure is
contrasted with the existing Object-Z design and the two approaches are discussed. The
work presented in this chapter has been published in a paper co-authored with Wolfgang
Hesse and Roger Duke [201]. Hesse provided the methodology, instruction, and insight

into the approach while Duke provided the example case study and editorial assistance.

3.1 Motivation

The aim of this work was to perform a comparison between a class hierarchy derived via
the application of FCA and an existing class diagram produced as part of an Object-Z case
study [52]—in particular applying FCA in connection with use-case analysis to discover
class candidates [59]. Moreover, the FCA class decomposition was performed sight unseen,
that is, only the use-cases were presented to the class designers — they did not have access

to an existing class diagram for the system being modelled. The informal description of

66

the system was considered as a use-case source and five use-cases were identified. With

respect to the process a number of questions were asked:

What are the dierences between the two class hierarchies and are there valid reasons
for the diterences?

What support does FCAfier the class designer and to what extent is it, or can it be
automated?

How does the FCA approach influence the quality of the resulting class structure?

Is FCA a useful mechanism for constructing Object-Z classes?

Currently, the “Object-Z engineer” works in a bottom-up manner, using mainly

inheritance and association to create the system. The process is largely based on native

experience, and a great deal of Object-Z “training” tries to cultivate this experience. Can

FCA help by providing a method that relies less on training and previously acquired

knowledge but results in an identical or at least a similar class structure?

The FCA-based methodology for identifying class candidates from a use-case-like

problem description is based on the systems analysis workiofeDand Hesse [59, 57].

Informally the approach can be described as follows:

(Re-)Structure the problem description and formulate use-cases.

Mark all relevant “things” occurring in the use-case descriptions.

Build aformal contexby taking the marked “things” asbjectsand the use-cases as
attributes

Generate the formal concept lattice for discussion. Check the concept nodes of the
resulting lattice for suitable class candidates.

Discuss, rework and modify the use-case descriptions and the attribute associations
of objects.

Iterate the preceding steps until a satisfactory class structure has evolved.

The next section introduces this approach in more detail using a mass transit railway

ticketing system as an example. Section 3.3 describes the progress from the initial informal

description to the final concept lattice representing a possible class structure for the example

case. Section 3.4 compares the results of the two approaches.

67

3.2 From an informal description to a first concept lattice

An informal description taken from a case study modelling a mass transit railway ticketing
system in Object-Z was used as the starting point for the exercise [52]. The main purpose
of the case study was to capture the functionality of thedBnt ticket types. The
functionality was specified as perceived by an observer of the railway system. The informal

description of the system by Duke and Rose [52] reads as follows:

e The mass transit railway network consists of a set of stations. For
simplicity, it will be assumed this set is fixed, i.e. stations are neither

added to nor removed from the network.

e The fare for a trip depends only upon the stations where the passenger
joins and leaves the network, i.e. the actual route taken by the passenger
when in the network is irrelevant. The fare structure caogmatedfrom

time to time.
e Three types of tickets can Ipairchased

Single-trip tickets permit only a single trip, and only on the day the
ticket is purchased. The ticket has a value in the range $1 to $10,
and the passenger is permitted to leave the network if and only if the

fare for the trip just completed does not exceed the ticket’s value.

Multi-trip tickets are valid for any number of trips provided the current
value of the ticket remains greater than zero. A ticket’s initial value
is either $50 or $100. Each time the passenger leaves the network the
value of the ticket is reduced by the fare for the trip just completed.

If this fare exceeds the value remaining on the ticket, the passenger
is still permitted to leave the network and the value of the ticket is
set to zero. A multi-trip ticket expires after two years even if it has

some remaining value.

Season ticketsare valid for either a week, a month, or a year. Within

that period no restrictions whatsoever are placed upon the trips that

68

can be undertaken.

e As tickets are expensive to produce, they carrdissued i.e. tickets
can have their expiry date and value reset. (The type of ticket cannot
be changed.) Although tickets are issued to passengers, the essential
interaction is between tickets and stations; thus passengers are not

modelled.

buy single
buy multi
buy season

X || update fare structure

type of ticket
expiry date
value

fare struct
station

fare

network
passenger
ticket X
trip X
day

single trip

initial value
multi-trip
number

value remaining
month

period

week

year X

X | X | X || reissue ticket

X
X

X|X|[X|X|X

X[X[X[X
X

XXX [X|X|X]|X

X[X[X[X

X| X[X]|X

Table 3.1: First formal context created from the five use-cases. The
corresponding concept lattice is shown in Figure 3.1.

From the informal description five use-cases were identifipdate fare structureouy
single ticketbuy multi-trip ticket buy season tickeaindreissue ticketIn the first step, the
text was cut into five pieces according to bold keywords representing the five “use-cases”.
All nouns showing a certain relevance were considered as “things” or objects in the FCA
sense. The choice of the nouns was deliberately done in a syntactical, “quasi-automated”
way, that is, without further semantic considerations as to whether this choice makes much

sense. A formal context was constructed using the identified nouns as the set of objects

69

update fare structure

<

fare struct

N
station initial value

value remaining
multi-trip
number °

reissue ticket buy season
N

’
single trip S
da
/

A
network
passenger

Figure 3.1: Concept lattice of the formal context abstracted from the cross
table in Table 3.1.

and the use-cases as the attriblitéBhe result appears in Table 3.1. Here ahat the
intersection of a use-case column and a noun row indicates that the noun was identified in
this use-case description. The corresponding formal concept lattice is shown in Figure 3.1.
A first correction concerns the cut of the text into use-cases where the headline
introducing the three types of tickets was mistaken as a part ofitiate fare structurase-
case. In fact, the nouype of tickets not addressed mpdate fare structurbut it is part of
the introductory headline and thus applies to the following three use-cases describing the
purchase of the three ticket types.
The initial changes between the context in Table 3.1 and Table 3.2 resultypanof

ticketbeing removed from thapdate fare structureise-case and added to the three “buy”

1To avoid confusion with the standard FCA terminology introduced in Chapter 1 the term “item”, when
referring to nouns, will be used throughout the chapter instead of “object”.

70

<
2
o
2
R
EIEE
gEl2l=|8
SIS EL
3|+ 'R E
&2 o
DT || >
o 2|33 |3
—| > |Qa|Qa
type of ticket X X | x| %
expiry date X
value X X | X
fare struct X
station X
fare X | X
network X[X | X
passenger X | X | %X
ticket X X[X | X
trip X | X | X | X
day X
single trip X
initial value X
multi-trip X
number X
value remaining X
month X
period X
week X
year X | X
time X X

Table 3.2: Changes to the formal context from Table 3.1 are shown in grey. A
newtimeobject has been added atyghe of ticketadjusted. The corresponding
concept lattice is shown in Figure 3.2.

use-casesduy single buy multiandbuy seasonThe diferences between the two contexts
are shown in grey. Furthermore the itéime was overlooked during construction of the
first context and has been included here in bothupéate fare structurandbuy season
use-cases. Time is explicitly mentionedujpdate fare structurbut not inbuy season ticket
However, based on the implicit assumption in the wording of “Within that period ...” the

text can be extended to “Within that periodtohe. ...

3.3 lterating the FCA steps

The initial steps of identifying objects and attributes within the informal description and
the initial corrections to the incidence relation resulted in the formal context in Table 3.2

and the line diagram in Figure 3.2. A first analysis of the lattice shows the use-casen

71

update fare structure

buy single

single trip

~
~
¢.

.A

passenger
network

station
fare struct

initial value
number

multi-trip
N

value remaining 0\ .

period
week
month

reissue ticket
N

Figure 3.2: Concept lattice of the formal context abstracted from the cross
table in Table 3.2. Observe thatnehas been introduced atype of tickehow
also applies to the three ticket buying use-cases.

dependencies as far as they can be derived from the pure syntactic formulation of the use-
cases:

1. If anode marked by a use-case label is selected then all the relevant nouns contained
in the use-case can be found among the successor nodes.
2. If a node marked by a noun label is selected then all the use-cases containing the
noun can be found among the predecessor nodes.
An immediate consequence is that the higher things occur in the lattice diagram then
the more specialised they are—i.e. the lower-most things are used in more use-cases and
are therefore the most general ones. A dual argument would also apply to the use-cases

if these formed a hierarchy, however, in this example there is no use-case which appears

above or below another use-case in the concept lattice.

72

<
2
o
2
R
EIEE
gEl2l=|8
SIS EL
JNIEIP|E|0
0| c
DT || >
o 2|33 |3
—| > |Qa|Qa
type of ticket X X | X | %
expiry date X
value X X | X
fare struct X
station X
fare X | X
network X[X[X[X
passenger X | X | X [X
ticket X X[X | X
trip X | X | X | X
day X
single trip X
initial value X
multi-trip X
number X
value remaining X
month X
period X
week X
year X | X
time X X

Table 3.3: Changes to the formal context from Table 3.2 are shown in grey.
The buy seasoruse-case has been adjusted and the corresponding concept
lattice is shown in Figure 3.3.

The idea that things which appear higher in the diagram are more specialised appears
to be counter-intuitive but results from the choice of nouns as objects and use-cases as
attributes in the construction of the formal context. While it is possible to transpose the
objects and attributes in FCA this choice was deliberate because the resulting diagram
resembles the typical layer structure of many software architecture diagrams. The upper
layers represent functional components while the lower ones represent common services
often associated with data clusters. Considering the diagram from the supremum down
represents system functionality and use-case refinement for larger examples. Considering
the diagram from the infimum up corresponds to the data view where each upward step

represents a refinement in the explanation of the data [94].

Further refinement of the structure now calls upon the “contextual knowledge” of the

modellefreviewer. From this point of view a first “semantic” analysis of the lattice can be

73

7

update fare structure
>
< day

single trip
station

initial value
value remaining
multi-trip

number L

reissue ticket buy season
g <

passenger
trip
network

e of ticket

Figure 3.3: Concept lattice of the formal context abstracted from the cross
table in Table 3.3. Note thaiassengeandnetworknow also apply to théuy
seasoruse-case.

conducted. Firstly, from Figure 3.2 it can be seen pesengeandnetworkappear to be

too high in the diagram. These items apply to tipelate fare structurebuy singleandbuy

multi use-cases but not tauy season Given the obvious importance of both passengers
and the railway network to a railway ticketing system these two items are less general than
expected by the modellers. This inspires a review ofiing seasonise-case; although not
mentioned in the corresponding use-case description, a season ticket implicitly involves
both apassengeand the mass transitetwork A more explicit version of the use-case

description would read:

Season ticketsare validon the whole networfor either a week, a month, or
a year. Within that period no restrictions whatsoever are placed upon the

trips that can be undertakéry the passenger

74

<
2
o
2
R
EIEE
gEl2l=|8
SIS EL
JNIEIP|E|0
0| c
DT || >
o 2|33 |3
—| > |Qa|Qa
type of ticket X X | X | %
expiry date X
value X X | X
fare struct X
station X
fare X | X
network X[X[X|X
passenger X | X | X|Xx
ticket X X[X | X
trip X | X | X | X
day X
single trip X
initial value X
multi-trip X
number X
value remaining X
month X
period X
week X
year X | X
time X | XX | X

Table 3.4. Changes to the formal context from Table 3.3 are shown in grey.
The implicit time references have been added and the corresponding concept
lattice is shown in Figure 3.4.

This modification is reflected in Table 3.3 and the corresponding lattice in Figure 3.3.

The context in Table 3.4 represents the recognition that the itlapandyearin buy
single and buy multirespectively also implgime Coincidentally, this also corrects an
earlier mistake where the modellers had actually missed a refereticeeia thebuy multi
use-case. The resulting concept lattice is depicted in Figure 3.4 and at this point in the
exercise the modellers were shown the existing class diagram of the system for the first
time. An initial informal comparison was made and these observations are presented in

Section 3.4 of the paper.

Looking at Figure 3.4 it can be observed that while the itene has now moved into
a lower and therefore more general posititare still appears too high in the diagram. It

is reasonable to assume that fares may also apply to some or all of the other ticket types,

75

update fare structure

<

buy multi

N
multi-trip
value remaining

- - number
reissue ticket
g

initial value o

buy season
<

period

week
month

passenger

type f ticket
ket

Figure 3.4: Concept lattice of the formal context abstracted from the cross
table in Table 3.4. Note thditme now applies to all three of the ticket buying
use-cases.

however, in the diagrarfare only applies to thaipdate fare structurandbuy singleuse-

cases. This leads to the identification and correction of another mistake from the initial

noun analysis of the use-cases; the ifare is mentioned in thé&uy multiuse-case but was

missed by the class modellers during the creation of the earlier contexts. The appropriate
inclusion is reflected in Table 3.5. A text mining approach using a dictionary of terms or

an ontology relevant to the domain being modelled may facilitate the automated extraction

of nouns from use-cases and prevent these kinds of errors.

Furthermore, considering tistationitem, the calculation of &are implies knowledge

of the stations by which a passenger enters and exits the mass transit railway network. Both

thebuy singleandbuy multiuse-cases include tliare item so in Table 3.5 thstationitem

has been included for these use-cases as well. The concept lattice resulting from these

76

<
2
o
2
R
EIEE
gEl2l=|8
SIS EL
JNIEIP|E|0
0| c
DT || >
o 2|33 |3
—| > |Qa|Qa
type of ticket X X | X | %
expiry date X
value X X | X
fare struct X
station X[X | X
fare X [X [X
network X[X[X|X
passenger X | X | X|Xx
ticket X X [X | X
trip X | X | X | X
day X
single trip X
initial value X
multi-trip X
number X
value remaining X
month X
period X
week X
year X | X
time X | X | X|X

Table 3.5: Changes to the formal context from Table 3.4 are shown in grey.
The missedfare and implicit station information has been corrected. The
corresponding concept lattice is shown in Figure 3.5.

“semantic implications” is depicted in Figure 3.5.

3.4 Comparing the two approaches

The aim of this modelling exercise was to perform a comparison between a class hierarchy
derived via the application of FCA and an existing class diagram produced as part of an
Object-Z case study. Having derived the lattice depicted in Figure 3.4 the modellers were
shown the existing class diagram for the first time. One further refinement was made
resulting in Figure 3.5. This section compares and contrasts the “final” lattice with the
existing class diagram shown in Figure 3.6.

An examination of the up-set for the unlabelled node below the “year” item in Figure 3.5
reveals the apparent similarity between the line and class diagrams. In Figure 3.7 this order

filter and the corresponding order ideal are shown in bold. The nodes |labalfesingle

77

buy multi

@

update fare structure

multi-trip
number
initial value

reissue ticket .
L value remaining |9

buy season
<

month
period
week

trip
passenger
time

network o

type f ticket
ket

Figure 3.5: Concept lattice of the formal context abstracted from the cross
table in Table 3.5. Note thdé&re andstationnow apply to both théuy single
andbuy multiuse-cases.

buy multj andbuy seasoimn Figure 3.7 represent the class candidates corresponding to the
classesSingleTripTicket MultiTripTicket and SeasonTickein Figure 3.6. Similarly, the
nodes labelled “TripTicket” and “Ticket” in Figure 3.7 correspond with TigTicketand
Ticket class unions. In this case, the structure shown in bold represents “ticket buying”
functionality. An alternative interpretation that considers the re-issuing of tickets would
move the corresponding “Ticket” label down to the node containingytpe of ticketand
ticketitems.

An obvious diference between the two structures is the presence of attributes and
possible methods (e.gpdate fare structupein the line diagram as compared with Object-
Z functions in the class diagram. However, the relationship between the two structures

can still be inferred by checking if the attributes required for a particular function are in

78

BaseTicket
rel ssue
enterStation
exitStation
SingleTripTicket MultiTripTicket SeasonTicket
relssue relssue relssue
exitStation exitStation
U
TripTicket
FareDataBase
Station U updateFare
stats
supplyld . | Ticket 1 statsFare
*
stations tickets database
y
MassTrgnstRanay clock
relssueTicket
startTrip 11 Clock
tripTicketFinishTrip
seasonTicketFinishTrip supplyDate
updateFare newDay
newDay

Figure 3.6: Object-Z class diagram for the mass transit railway system. This
diagram appears as Figure 9.8 in the original case study [52].

the “correct” place. For example, the Object-Z representation makes EssteiStation
and ExitStationfunctions so that the appropriate fare can be calculated and checked for
SingleTrip and MultiTrip tickets. The action of entering and exiting stations is assumed
domain knowledge and is therefore not present in the use-cases. While the actions
themselves do not appear in the line diagram the lattice mirrors the required structure
because thstation fare, andvalueattributes are only available to these ticket types. This
information is not required for a SeasonTicket.

Other diferences between the two structures include the absence of olStiatirsn
Clock and FareDataBaseclasses in Figure 3.5. In addition, there are no references to

statistics in the original use-cases and a comparison shows thatats@and statsFare

79

=

buy season

i

“TripTicket”

“Ticket” —

trip
passenger
time
network @

type of ticket
ticket

Figure 3.7: The Formal Concept lattice from Figure 3.5 with the ticket
class hierarchy shown in bold. The nodes labelled “TripTicket” and
“Ticket” correspond respectively with th&ripTicketand Ticket class unions

in Figure 3.6.

functions in Figure 3.6 are therefore quite artificial. Thes®edences are largely due
to functional artefacts or abstractions required for the Object-Z specification of the mass

transit railway. As Duke and Rose state:

The main purpose of this case study is to capture the functionality of the
different ticket types. The approach taken is to specify ticket functionality
from the point of view of the passenger, i.e. as perceived by an observer of the
railway system. In order to do this, however, it is necessary to conceptualise
and abstract various other objects in the system, such as the stations, a database

to record the fare structure, and a clock to keep track of the days [52].

A further important question concerns the modularisation of the system, that is, its

80

update fare structure\

buy single

= day o

fare struct multi-trip

value remaining
number
initial value L

reissue ticket buy season

expiry date period
week
month

ear

value

network

trip

time
assenger |®

type of ticket
ticket

Figure 3.8: Initial package structure based on Figure 3.4.

decomposition into smaller units typically calledmponentgpackage®r modules Lindig

and Snelting have shown that FCA can support this decomposition by forming so-called
block relations[132]. Block relations result from filling up a formal context table with
additional marks (not contained in the original context) in order to coarsen the lattice
structure and obtain more compact concepts. In this case, the attempt to find an appropriate
decomposition for the lattice of Figure 3.4 resulted in the initial package structure depicted
in Figure 3.8. Three possible packages deal with the purchase of (various kinds of) tickets;

the fare structure and its updates; and the re-issuing of tickets.

81

3.5 Object Exploration

While there are obvious similarities between the resulting line diagram and the original
class diagram for this particular example, the approach described here has limitations.
Firstly, how does a modeller know when to stop iterating? Statements like “in the correct
position” still infer a reliance on the intuition, native experience and training of the
modeller. A second question posed at the start of the chapter was “What support does
FCA offer the class designer and to what extent is it, or can it be automated?”. The current
iterative process relies on the development stakeholders agreeing that no more changes are
necessary. While the domain knowledge of the stakeholders will always be required to
“verify” that the lattice makes sense there is a way to formalise the checking process that
also exploits this background knowledge.

In the example presented here iterations during the analysis result from questions about
the “correct” position of objects and attributes in the line diagram. As a consequence of
discussion between the modellers and system stakeholders the formal context is modified
and the new line diagram examined. This could be seen asl &locand informal form
of object exploration which was introduced in Section 1.5.7. In the existing approach
a perceived contradiction in the lattice results in a context update and another iteration
of the process. An alternative would be to formally apply object exploration. Rather
than relying on an inconsistency in the lattice being “noticed” the formalised process
would instead presents a series of implications to the system stakeholders for discussion.
Iterations can then stop when all the valid implications in the context have been explored.
An obvious limitation of this approach, however, is the issue of scalability. The number
of implications that need to be considered and discussed during object exploration may

become unmanageable for even medium-size examples.

3.6 Conclusion

This chapter has presented a modelling exercise to identify class candidates using use-case

analysis and FCA. An iterative correction process resulted in a final line diagram which

82

was then contrasted against a known existing structure. A small, well understood example
was chosen and a comparison of the resulting structures demonstrates that they are quite
similar. Obvious diferences between the two structures rely on information that is not made
explicit in the use-cases or they represent artificial constructions related to the specification
in Object-Z.

Although it may be possible to automate the initial noun identification within use-cases,
later refinements rely on the insight and judgement of those involved in the modelling
process. This includes modellers, domain experts and other system stakeholders. The
process can be further mechanised by applying object exploration.

The value of this approach then is in the process itself—the construction and discussion
of the line diagrams, and in the kinds of questions it forces the designer to ask about the
domain structure. The process and resulting diagrams also promote discussion as modellers
consider and question the position of attributes in the line diagram and try to adjust
the formal context accordingly. This is also consistent with the experiences reported by
Andelfinger [6] where FCA was used to facilitate discussions during requirements analysis.

In this chapter FCA was used to support the derivation of an alternative class structure
to the existing Object-Z hierarchy. Chapter 4 explores the application of FCA to the
specifications themselves as a mechanism for visualising the structure and properties of

formal specifications.

83

Chapter 4

Formal Specification Navigation and
Visualisation

This Chapter introduces an approach for navigating and visualising Z specifications using
FCA. The approach takes a source specification writteATgXland produces a formal
context representing the static structure of the specification. A number of line diagrams
can then be produced which allow a user to investigate and explore various properties
of the specification. The line diagram does not replace, but is intended to be used in
conjunction with, the original Z specification. Abstraction through conceptual scaling,
nesting, zooming and folding line diagrams allows users to retain context while navigating
large specifications and an example based orBtitbdayBookspecification is presented.

A summary of this work has been publishedTileyO3survey[200] and a more detailed

version inTilleyO3towardq199].

Section 4.1 discusses existing approaches to visualising Z and related languages. These
approaches typically focus on mappings to UML or the integration of UML-like graphical
notations with Z. Section 4.2 describes an approach to creating formal contexts from
Z specifications and th8irthdayBookspecification is used as an illustrative example.

The abstractionsfiorded by FCA are introduced in Section 4.3. The application of the
abstractions to visualising and navigating Z specifications is presented throughout the

remainder of the chapter.

84

4.1 Visualising Z Specifications

In an attempt to dispel the myths that “formal methods require highly trained mathematics”
and that “formal methods are unacceptable to users” [91] there have been a number
of approaches to provide alternative visual representations of specifications for Z-like
languages. Typically, these representations have both textual and graphical components
within their notation. Object-Z, for example, incorporates a number of UML-like graphical
elements. One of the commonly stated reasons for the poor adoption of formal methods
is that they are diicult to use and understand. These graphical notations typically aim
to provide an abstraction over the mathematics to make the formal notations easier to
understand.

UML [22] has become the de-facto industry language for modelling systems. While it
provides a means of system specification it does not have the mathematical rigor of formal
methods. However, UML enjoys a popularity that formal methods do not and its graphical
nature makes it an obvious choice as an alternative representation language. UML is also
implementation oriented which may be helpful to the ultimate implementers of a particular
model, however, this is ultimately inconsistent with the aims of a conceptual modelling
language [107].

There have been a number of approaches used to introduce graphical representations
of Z specifications via UML. The work of Sun, Dong, Liu and Wang [195] provides
an XML [219] representation for the Z family of languages called ZML. ZML can be
transformed into UML and the mark-up is discussed further in Section 5.1.3. Many
of the approaches focus on the structural aspects of the specification [224]. Kim and
Carrington [117] argue that beyond the static structure of the specification the dynamic
nature and complex constraints must also be visualised for a full understanding of a
specification. To accomplish this they introduce two other graphical representations in
addition to UML — one for the complex constraints and another for the operation schemas.

UML is an object-oriented notation and while Kim and Carrington’s approach focuses
on Z the use of UML as a graphical notation for formal specification typically focuses

on application to Object-Z. Other work by Kim and Carrington [114, 115], Evans and

85

Clark [67], and Miao, Liu and Li [136] also combines Z and UML, however, rather than
visualising Z specifications via UML these approaches focus on providing a formal basis
for various aspects of UML in Z.

“Alloy” is a Z-related, lightweight formal method with both textual and graphical
components thatfers a straightforward mapping from UML into a formal notation [106,
105, 107]. Lightweight formal methods are “lightweight” in that thefjeo “less than
completely formal” or partial approaches to specification, validation and testing [2, 106].
Typically they trade & completeness or language functionality féli@ency. Alloy is
discussed further in Section 5.1.2.

With regard to the graphical elements in Object-Z, Duke and Rose [52] note that
graphical notations are useful for presenting material to educate users and to facilitate
communication between stakeholders in the development of a system. However, graphical
notation should be seen as a complement to the specification. They also point out that
graphical notations are descriptive and semi-formal at best. They are not appropriate for
formal procedures which are conducted using mathematics. This view is consistent with
the use of FCA to visualise Z specifications. The aim is not to provide an alternative
to the specifications themselves but rather a representation that can be used alongside, to
help navigate and provide insight into, the original specification. The first step towards
the visualisation of a Z specification via FCA is to create a formal context from the

specification.

4.2 From a Specification to a Formal Context

Given the mathematical nature of the Z notation, specifications are typically written in
IATEX mark-up which is then translated into a rendered form such as PostScript or PDF. Z
representation issues and a number of alternative notations are discussed in Section 5.1. By
considering the schemas as a set of objects and the mark-up elements of the specification
“source” as attributes it is possible to create a formal context from which line diagrams can
be constructed. An example context generated fronBirtbdayBookspecification in Oz

style BTpX [118] is presented in Table 4.1.

86

o
g 8
gl | (w8 T2 c(S o 8lc _ Slsl ozl Zle
2. 22|18 | 2|12 |2 e |22 2o =a | 2 — | E |~ 2| = | ~|8 5| |2 xS | | ==
BirthdayBook XXX | X X | X [X]X[X]X
InitBirthdayBook || X X X X | X
AddBirthday X | X X X | X |X X XXX X[X[X[X|X]|X
FindBirthday X | X x| % x| X |X X X X [X|X|X | X
Remind X|X| X[X[X X| X | X X X X | X X | X | X | XXX
Success X X X XX [X
AlreadyKnown || X |Xx X X | X X X X X X | X X
NotKnown X | X X X [X X X X X X | X X
RAddBirthday X | X X| % X| X | X X XXX X | X|X|X]|X]|x X[X[X X|X|%x| % X | X
RFindBirthday || x|x x| x X| X |X X X X X X[X |X|X X| X% X| X | X
RRemind X|X| X [X]| X X | X |X X X X | X X | X | X | X[X|X[X[X[X X

Table 4.1: Formal context for tH&irthdayBookspecification.

\begin{schema}{Success}
result! : REPORT
\ST
result! = ok
\end{schema}

Figure 4.1: ATEX mark-up for theSuccesschema in Oz style.

For example the Success schema shown in Figure 4.1 contains the mark-up elements
\ST, =, result!, REPORT, andok (ignoring the common opening and closing schema tags).
This corresponds with th8uccessow in the context shown in Table 4.1. Note that simple
elements like {” have also been included to produce the “richest” or most detailed context
so that as much of the original specification as possible is captured. Various abstraction
techniques are available to ultimately hide details that are not relevant to the current interest
of the viewer. These techniques are discussed in Section 4.3.

While information hiding abstractions like the schema calculus and3hand ‘A’
conventions facilitate the usability of Z they also complicate the context creation process.

For example, consider tHeFindBirthdayschema:

RFindBirthday= (FindBirthday A Successv NotKnown

A simple parser would include tHéndBirthday, SuccesandNotKnownschema names as

attributes in the context but not the content contained in their expansions.

87

x s
8l 2le
c| |o|wl& 2 oS T | = o=l [ol=lo]l |88
2| 153212k |5EIE2I5EEE 2| B |<2lE| | BB |E5EI.E2E]s
£l.| 2|25 | 21582 2|3 |22 &8|S|5 | 2| —| 5|28 ~|12]8|c|S| ezl 2= =
FindBirthday ||x|x X| X X| X | X X X X | X[X|X|x
Success X X [X X[X[X
NotKnown X[X X X [X X X X X X
[REindBirthday [[x[x] [x[x[[x[X[x[[x[[[x[[x[[[[[[X[x[x]x[x] [[T [X[x][x] [x[x[x]

Table 4.2: Sub-context of Table 4.1 highlighting composition in
RFindBirthday

While the resulting context would be suitable for visualising relationships between
schemas it could not, for example, provide an accurate view of type usage in

RFindBirthday Again the aim is to provide as much detail as possible during the generation

of the context.

An obvious solution to this problem is to mandate expanded versions of specification
for context creation. The context in Table 4.1 was produced from a source specification that
included expanded versions of tRAddBirthday, RFindBirthdagnd RRemindschemas.

This expansion could be performed by the specification writers or automated using
tools. The ZML mark-up, for example, can render expanded schemas automatically from

horizontal schema specifications.

An alternative solution is to perform automated expansion using information contained
in the context itself. Given that names must be declared and defined before they are used in
Z then the existing explicit declarations of the schemas can be used to infer the expansion.
Provided that parsing for context creation proceeds in a linear manner through the file then
the corresponding row for any named schema is already defined. If the rows of the context
are considered to be bit vectors then expansions can be included by taking the logical
“OR” of the current schema row along with the rows of any named schemas within it. For
example, consider thRFindBirthdayschema and a sub-context of Table 4.1 containing

only the named schemas. The sub-context appears in Table 4.2.

Observe that the result represents the logical OR of the composed schemas plus the

schema conjunction and disjunction operato{kagd and\lor). Again, note that this

88

x s
8l 2lc
c o |w|l 2ol T | ol |ol=ld] |88
gl 23E12)k5| |BE 22|85 R E| B 2lg| | BB E5alE 3]s
<. 3‘253‘09”953/::'0553*/._5'0/_/,\9 8:32&%3 S| ==
AddBirthday || x|x X | X X| X | % X XXX [X[X|X[X|X]X
Success X X X XX |X
AlreadyKnown || X | X X X | X X X X X X
[RAddBirthday [[x[x[[x[x[[x[x[x] [x[[X[X[X[X[X[X[x]x[x]X] [X[X[X] [][IX[X[x[x] [x]x]

Table 4.3: Sub-context of Table 4.1 highlighting composition in
RAddBirthday The invalid “bit” is shown in grey.

context was produced from an already expanded version of the specification so the schema
definition operator\sdef) and the referenced schema names have not been included in

the context. However, if the same technique is applied t&idddBirthdayschema:

RAddBirthday= (AddBirthdayA Successv AlreadyKnown

the result includes an extra invalid “bit”, shown in grey in Table 4.3. The bit is invalid
because the\ and = operations are mutually exclusive — a schema operation either
changes or preserves the value of state variables. These attributes should therefore be
excluded from the expansion process. In keeping with the view of the object rows as
bit vectors this exclusion could be performed using a logical “AND” operation and an
appropriate bit-mask. If there are amy operations among the schemas named in a
horizontal schema then the result must also be a state-changing schema.

As expected, the resulting addition also includes the schema conjunction and
disjunction operators and precedence ordering brackets RFEmelBirthdayrow. Having

created a formal context from a specification it is now possible to produce a concept lattice.

4.3 Abstraction in FCA

While it is possible to render the line diagram of the concept lattice corresponding to the
entire context the result is often overwhelmingly complex and of little value. There are,
however, notable exceptions. Snelting [177] describes a project to modularise a 20 year old

aerodynamics system written in FORTRAN that was used for aeroplane development. The

89

INPUT_ISETDEF IHBUR_IREARE

PBITER_IPSIX

KULK1BEG

Figure 4.2: Module structure of an aerodynamics system written in
FORTRAN. Despite the complexity of the diagram the concept lattice
was still useful as a quality metric. This image appears as Figure 3 in
SneltingO0softwarfl 77].

106KLOC source resulted in a lattice with more than 2,249 concepts which is shown in
Figure 4.2. Despite the unreadability of the diagram the concept lattice was still useful as a
quality metric. The lattice was not horizontally decomposable and on the basis of this result

the remodularisation project was cancelled and a new system developed from scratch.

The assumption that the whole context will be rendered as a single line diagram is a
common source of naive criticism about the scalability of FCA. Rather than rendering the
entire context as a single lattice a number of abstraction mechanisms are typically used.
One approach to reduce the visual complexity of line diagrams is to create a line diagram
of a sub-context containing only the attributes of interest. This is the simplest form of
conceptual scaling. Other abstraction mechanisms include: introducing a number of many-
valued contexts (an elaboration on conceptual scaling), nested line diagrams, zooming,

and folding [42]. These mechanisms facilitate the ten tasks of conceptual knowledge

90

processing identified by Wille [227].exploring, searching, recognising, identifying,
analysing, investigating, deciding, improving, restructurargdmemorising Where:
e Exploring shall mean looking for something of which one has only a

vague idea.

e Searchingshall be understood as looking for something which one can

more or less specify but not localise.

e Recognising is understood with the meaning of perceiving clearly

circumstances and relationships.

¢ |dentifying shall mean determining the taxonomic position of an object

within a given classification.

e Analysing in the scope of conceptual knowledge processing is
understood as examining data in their relationships while guided by

theoretical views and declared purposes.

e Investigating means to study by close examination and systematic

inquiry.
e Decidingshall mean resolving a situation of uncertainty by an order.
e Improving has the meaning of enhancement in quality and value.

e Restructuring means to reshape a given structure, which, within the

scope of our discussion is conceptual in nature.

e Memorising is understood as a process of committing and reproducing
what has been learned and retained.
The application of these methods to formal specifications is demonstrated in the

following sections.

4.3.1 Scaling

Conceptual scaling was introduced in Section 1.5.4 and in its simplest form a sub-context
can be considered as a conceptual scale. This abstraction focuses the user’s attention on the

objects and attributes of interest by rendering a line diagram containing only the relevant

91

REPORT

X || DATE
X || NAME

BirthdayBook
InitBirthdayBook
AddBirthday
FindBirthday
Remind X
Success
AlreadyKnown
NotKnown
RAddBirthday X
RFindBirthday
RRemind X

X
X

X
X

X

X
X[X[X[X]|X

X[X[X[X|X]|X

Table 4.4: A sub-context considering the basic data-types from the
BirthdayBookspecification as attributes.

concepts. A scale represents a query that can be posed to reveal something about the
structure or nature of the specification. A scale can also be thought of as a view over the data
and this is the terminology used for scales in the Cernato FCA tool. Cernato is discussed
further in Section 5.2.5. In terms of the conceptual knowledge processing tasks defined

above conceptual scaling suppagigloring searchingidentifying andmemorising

Within existing FCA tools scales are normally created by a conceptual system engineer
in conjunction with a domain expert. The scales attempt to capture the knowledge of
domain experts so that it can be stored and applied by non-expert users. For example, in
an FCA-based information retrieval project for the Center of Interdisciplinary Technology
Research at TU-Darmstadt a conceptual knowledge system was designed that contained
over 150 scales [161].

A sub-context of Table 4.1 containing only the basic data-types irBtltedayBook
specification is presented in Table 4.4. The corresponding line diagram in Figure 4.3
represents a scale showing data-type usage across the schemas in the specification.

It can be seen from Figure 4.3, for example, that the robust versions Atittirthday
FindBirthday and Remindfunctions all use th&kEPORTattribute. In terms of data-type
usage this is the only thing that distinguished them from their less-robust counterparts.

Scales can be defined on a per-project basis like the data-type scale described above or

they could be pre-defined based upon Z language constructs. For example, a sub-context

92

InitBirthdayBook
REPORT:X

AddBirthday AlreadyKnown
FindBirthday NotKnown
BirthdayBook
Remind
RAddBirthday
RFindBirthday

RRemind

Figure 4.3: Line diagram of the concept lattice corresponding to the context in

Table 4.4.

8

1S
BirthdayBook
InitBirthdayBook
AddBirthday X
FindBirthday X
Remind X
Success
AlreadyKnown X
NotKnown X
RAddBirthday X
RFindBirthday X
RRemind X

Table 4.5: Formal context considering(\Delta) and= (\Xi) operation-types
from theBirthdayBookspecification as attributes.

based on theA’ and ‘E’ conventions is shown in Table 4.5. Note that only a count of the
number of schemas in the object contingent is shown in Figure 4.4 rather than the actual
schema names. This can be useful when only an idea of the distribution of the objects is
required rather than a complete list of the objects at each concept. The two state schemas
and thelnitBirthdayBookfunction appear at the top of the diagram. The two versions of
the AddBirthdayfunction appear under the concept label@@1ta on the right and the

remaining sixX\Xi schemas on the left.

An alternative to creating scales during the construction of a conceptual knowledge

93

Figure 4.4. Line diagram of the concept lattice corresponding to the context in
Table 4.5.

system is to generate scales on demand. Dynamically generated scales have been applied
in FCA-based email and document management systems [39, 38]. The process could be
semi-automated if the appropriate meta-data for the mark-up elements in the context was
available. For example, a type-usage scale could be automatically generated by selecting a
sub-context containing all the data-types. The ZML mark-up uses tag types to identify
elements, e.g.<type>DATE<\type> for the DATE data-type. If the initial context is
created from a ZML version of the specification then the tag-types can be stored as meta-
data and exploited for scale generation. Other scales could be based on input and output
variables, for example. Although the automatic layout of line diagrams is still a problem
within the FCA community, a simple order embedding within a larger, well known lattice

layout could be used to create usable, dynamically generated scales [41].

4.3.2 Visualising Schema Composition

A sub-context showing the attributes which are schemas is presented in Table 4.6. The
sub-context contains references to schemas from within the object schemas and therefore
represents schema composition. For example, the structure 8AtdBirthdayschema

can be seen in Figure 4.5. Traversing upwards through the lattice from the concept
with the object label “RAddBirthday” recovers the attribufeddBirthday, AlreadyKnown,
SuccessindBirthdayBook This type of visualisation supports the conceptual knowledge
processing tasks aécognisingandidentifyingwhere the relationships between schemas

can be clearly perceived.

94

c

x
HEERRE
@Qls|T c|c
> | < |S nlX|3
T |E|S(BloS| S
O|m|; | £ ot TlE
S|S|T|EIZ|D %
=lT|E Q3= |2
o< |I|xn|<|2

BirthdayBook

InitBirthdayBook || x

AddBirthday X

FindBirthday X

Remind X

Success

AlreadyKnown X

NotKnown X

RAddBirthday X | X X | X

RFindBirthday X X X X

RRemind X X | %

Table 4.6: A sub-context representing schema composition within the
BirthdayBookspecification.

Success
BirthdayBook

AddBirthday
Remind
NotKnown
InitBirthdayBook
FindBirthday
AlreadyKnown |®
AddBirthday:X FindBirthday:X
AlreadyKnown:X Remind:X NotKnown:X
RAddBirthda RFindBirthda
RAddBirthday:X
RRemind:X
RFindBirthday:X
InitBirthdayBook: X |®

Figure 4.5: Line diagram based on Table 4.6 showing composition.

95

InitBirthdayBook
AddBirthday
FindBirthday

Remind
RFindBirthday

AlreadyKnown
RRemind

NotKnown
RAddBirthday

Success

BirthdayBook
InitBirthdayBook
AddBirthday
FindBirthday
Remind
Success X
AlreadyKnown
NotKnown
RAddBirthday
RFindBirthday
RRemind

X

X | x| x|x|x|| BirthdayBook

X[X[X|[X|X
X
X
X
X

XX X

Table 4.7: Formal context considering schema names as both objects and
attributes G = M).

If the context in Table 4.6 is extended so tkat M and the diagonal added such that
glg, ¥ g € G, then the resulting line diagram contains a concept for each schema. Table 4.7
represents this extension and the corresponding line diagram appears as Figure 4.6. From
this class-like view the structure of the robust schemas can again be clearly seen. The
structure oRAddBIrthdayis made explicit in Figure 4.7 which highlights the sets of nodes
both above and below tHeAddBirthdaynode.

In Figure 4.7 the only unlabelled node in the diagram can be clearly seen Satmess
This concept represents the fact tBathdayBookandSuccesschemas are only combined

in the robust functions.

4.3.3 Nested Line Diagrams

The power of conceptual data systems comes from the ability to combine pre-defined
scales together to produce new views over the data. The contexts of multiple scales can be
combined into a single context which can then be viewed as a line diagram or the scales can
be combined in a nested line diagram. This supports the conceptual knowledge processing
task ofanalysingwhere the chosen scales represefiedent theoretical views.

In some systems scales can be nested to arbitrary depth; however, beyond a single

level of nesting the diagrams typically become too small to be usable when rendered on

96

BirthdayBook :X
. ~
AlreadyKnown:X FindBirthday:X ‘
! 1 ! 1
AddBirthday:X H]

1
1
'
 Q () O

[RAddBirthday:X | [RRemind:X | | RFindBirthday:X |

Figure 4.6: Line diagram of the concept lattice corresponding to the context in
Table 4.7 showing composition relationships between schemas.

BirthdayBook :X
~,

Success:X
W
AlreadyKnown:X

Figure 4.7: Line diagram from Figure 4.6 highlighting the ideal and filter for
the “RAddBirthday” concept.

97

InitBirthdayBook

.
.

FindBirthday AlreadyKnown AddBirthday
Remind \CD/ NotKnown ‘
RFindBirthday RAddBirthday

RRemind

Figure 4.8: Nested line diagram showing the context from Table 4.4 nested
inside the context from Table 4.5.

a computer monitor. Figure 4.8 presents a nested line diagram where the context from

Table 4.4 is nested inside the context from Table 4.5. For comparison the reverse nesting is

presented in Figure 4.9 with the operation-type scale nested inside the data-type scale.

From the outer, rightmost concept in Figure 4.8 it can be seen that the only state

changing or A’ operations in theéBirthdayBookspecification are the schemaddBirthday

and RAddBirthday While Spivey’s simple example is purely illustrative and a person’s

birthdate does not change over time there is typically a need in most systems for deletion

and update as well as insertion. The specification may therefore be incomplete.

This is an obvious omission and although omitted in the original specification

extensions are often included when the specification is presented as an example by other

98

FindBirthday
Remind

AlreadyKnown|
NotKnown

RFindBirthday
RRemind

Figure 4.9: Nested line diagram showing the context from Table 4.5 nested
inside the context from Table 4.4.

authors. Table 4.8 presents a context showing the basic data-types and operation-types for
an extended version of tlgrthdayBookspecification based on the work of Sun et al. [48].

The extensions include a schema to remove birthdays from the system and a schema to edit
existing birthday details. The complete specification appears in Appendix A. Figure 4.10
presents a nested line diagram of the extended specification for comparison with Figure 4.8.

The two scales represent basic data-type and operation-type sub-contexts from Table 4.8.

Schema Composition Revisited

The structure of the extended specification from a composition point of view is presented

in Tables 4.9 and 4.10 using the approach described earlier in Section 4.3.2. In the

99

|_
w(S| @
==
SNEIEEE
BirthdayBook X [X
InitBirthdayBook
AddBirthday X [X X
FindBirthday X [X X
Remind X[X X
Success X
AlreadyKnown X [X X
NotKnown X | X X
RAddBirthday XX [%] X
RFindBirthday X[X | % X
RRemind X[X | X X
RemoveBirthday X X
ModifyBirthday X [X X

Table 4.8: Formal context containing the basic data-types and {hBelta)
and= (\Xi) operation-types from the extend&irthdayBookspecification.

InitBirthdayBook

i
@,
O

[ix] [BirthdayBook]

FindBirthday AlreadyKnown
Remind NotKnown

RFindBirthday
RRemind

Q
Q’
. o

AddBirthday
ModifyBirthda

RAddBirthda:

Figure 4.10: Nested Line diagram of the exten8athdayBookspecification.
The two scales are data-type and operation-type sub-contexts from Table 4.8.

100

©

% P g E
o | ®|B] =
nlo|e Sl<|m
>|< |E wlX |20
T|E|E|T 08>
S|p|a|E|8RIE|S
S| |T|EIB|D|E|E
=Elc|E|eS=|0l0
o< |L|x|n|<|Z|x

BirthdayBook

InitBirthdayBook || x

AddBirthday X

FindBirthday X

Remind X

Success

AlreadyKnown X

NotKnown X

RAddBirthday X | X X | X

RFindBirthday X X X X

RRemind X X | X

RemoveBirthday || x

ModifyBirthday X | X X

Table 4.9: A sub-context representing schema composition within the
extendedirthdayBookspecification. The corresponding line diagram appears
as Figure 4.11.

corresponding Figures 4.11 and 4.12 the implementation d¥itdifyBirthdayoperation
can be clearly seen.ModifyBirthday combines theRemoveBirthdayand AddBirthday
functions to first delete and then insert updated details into the system. The lack of robust

implementations based on tBeccesschema can also be observed for these two functions.

4.3.4 Zooming

Zooming is another abstraction technique that is also knowfiltesng. In zooming a
subset of the object set is presented for display based on the extent of a concept of interest.
In conjunction with nested line diagrams zooming allows a detailed or “magnified” view of
a particular concept. A user can “drill down” into the concept and this close examination
is consistent with the conceptual knowledge processing taskgobdring identifying and
investigating

Figure 4.13 presents the results of zooming@fae concept in Figure 4.9. Note that
not only is the inner lattice displayed but also the objdtEndBirthday, RRemindnd
RAddBirthdayrom the lower concept are shown as well. The relevant objects in Table 4.11

are shown in grey.

101

Success
BirthdayBook

BirthdayBook :X

InitBirthdayBook

AddBirthday
AlreadyKnown
AddBirthday:X FindBirthday
N 7 Remind

NotKnown
RemoveBirthday

NotKnown:X
[AlreadyKnown:X] [Remind:X] |FindBirthday:X

RemoveBirthday:X

[RRemind] [RFindBirthday]

ModifyBirthda [RAddBirthday|

InitBirthdayBook:X
RFindBirthday:X
ModifyBirthday:X
RRemind:X
RAddBirthday:X @

Figure 4.11: Line diagram showing schema composition within the extended
version of theBirthdayBookspecification.

% g
c > >
NS s BB 2R
S| >»|& |8 =} o tlc
m|8|oc|T SlglE|= mlEe
|2 |E nlX|2E|E BT I|E
FIES|E|E e 9> 8la|m|ElE |2
S|E|F SloT|c S|E|G |
2l=|m o ol ® || =
SEEEE R HE
o|S|2C|C|a|< |22 |2 |e|x|=
BirthdayBook X
InitBirthdayBook || x | x
AddBirthday X X
FindBirthday X X
Remind X X
Success X
AlreadyKnown X X
NotKnown X X
RAddBirthday X X X | X X
RFindBirthday X X X X X
RRemind X X | % X
RemoveBirthday || x X
Modify Birthday X X X | X

Table 4.10: Formal context considering schema names as both objects and
attributes for the extended version of tB&thdayBookspecification. The
corresponding line diagram appears as Figure 4.12.

102

BirthdayBook :X
.~
AlreadyKnown:X ==

| BirthdayBook
AddBirthday:X
RemoveBirthday:X !

Success:X
O

FindBirthday:X
1

NotKnown:X
1

Remind:X
N—
[InitBirthdayBook |[RemoveBirthday | [AddBirthday | [AlreadyKnown [Remind | [FindBirthday |

ModifyBirthday:X RAddBirthday:X RRemind:X |/|RFindBirthday:X | !
(>/ (j/ NotKnown

[ModifyBirthday | [RAddBirthday | [RRemind| [RFindBirthday |

Figure 4.12: Line diagram showing schema composition in the extended
BirthdayBookspecification with schema “self-references” included.

BirthdayBook
\Delta:X

RFindBirtday AddBirthday
RRemind RAddBirthday

FindBirthday
Remind ()

Figure 4.13: Zoomed line diagram showing thate concept from Figure 4.9.

103

REPORT

X || DATE
X || NAME

BirthdayBook

InitBirthdayBook

AddBirthday

X
X

FindBirthday

X
X

Remind

X

Success

AlreadyKnown

NotKnown

RAddBirthday

X

RFindBirthday

X

X[X[X|[X]|X

X[X[X[X|X]|X

RRemind

X

Table 4.11: Formal context from Table 4.4 with the objects and attributes
corresponding to the zoomed line diagram in Figure 4.13 shown in grey.

4.3.5 Animation and Folding

The final abstractions to be introduced in this chapter are animation and folding, both of
which are used to help users navigate within line diagrams. The term “animation” used

with respect to line diagrams should not be confused with specification animation which

was introduced in Section 1.6.

Folding line diagrams are scales that are constructed, or unfolded, incrementally. As
attributes are added to the scale the line diagram unfolds to reveal the new structure.
Animation is used to provide a smooth transition between the changing layouts [13].
This helps users to retain a sense of “where they are” within the structure of the lattice
and reflects the conceptual knowledge processing tasklasftifying Attributes can
also be removed to fold or collapse the line diagram and in this way scales can be
constructed interactively. Cole and Eklund discuss the use of folding line diagrams for
scale construction in a medical document management system [38].

In the initial state a folding line diagram contains a single concept containing all the
objects. Figure 4.14 presents three screenshots showing the incremental construction of a
scale within Cernato. The example presented here is based on the case study in Chapter 3
and in the image shown top left two attributes have already been added to the scale. With

the addition of a third attributdo(ly seasonthe diagram again unfolds and the objects are

re-distributed accordingly.

104

buy single: =
]

Figure 4.14: Three screenshots illustrating animation in Cernato.

4.4 Conclusion

While the visualisations presented here only represent the static structure of the
specifications they provide a basis for the interactive exploration and navigation of Z

specifications. Rendering the whole lattice, even for simple examples, is generally not
useful, however, the ability to present only those attributes of interest or to view multiple

scales via nesting facilitates the exploration of large contexts in a useful manner. Folding
line diagrams and animation can also help users retain a sense of “location” within
visualisations of large specifications. These abstractions illustrate the ability to handle

complexity via information hiding as requested by Wing [229].

Various visualisation technigues such as zooming, nesting, and animation are well

105

known and used in FCA as mechanisms to navigate and elaborate structured data. This
chapter has demonstrated that these techniques can also be applied to formal specifications
in an easily understood and natural way. The next chapter introduces a prototype tool that
embodies nearly all of the abstractions described here and a number of implementation

issues are discussed.

106

Chapter 5

Specification Browser Implementation

This chapter describes the implementation of a tool developed by the author for
interactively exploring Z specifications. The tool implements the ideas introduced in the
previous chapter by exploiting ZML [195], an XML representation of Z, and the open-
source, cross-platform FCA tool ToscanaJd [16, 15].

Section 5.1 of this chapter discusses Z mark-up and representation issues including
a number of approaches to render Z specifications on the Web. In particular the ZML
language is introduced. Section 5.2 then provides an overview of a number of FCA tools
including ToscanaJ before Section 5.3 describes a tool built using ToscanaJ and ZML. The
remainder of the chapter discusses the implementation of the tool including specification
transformation, context creation and browser integration issues. Two brief overviews of the
implementation have previously been published [199, 200] while Section 5.2 appears in a

paper describing FCA tool support [202].

5.1 Representing Z

The mathematical nature of the Z notation and the graphical nature of schema boxes
present some fliculties when writing specifications on a computer. The required symbols

are unavailable in traditional text editors and there have been various approaches to
representing Z in documents in both human and machine readable forms. Since the ISO

standardisation of Z [104] the required symbols have been incorporated into the Unicode

107

\begin{schema}{AddBirthday}

\Delta BirthdayBook \\

name? : NAME \\

date? : DATE
\ST

name? \nem known \\

birthday’ = birthday \union \{name? \map date?\}
\end{schema}

Figure 5.1: Oz styleNpX mark-up for theAddBirthdayschema.

character set [207, 102, 103]. As a result, fonts that support Z are now available for use in
word processors and other applications. Traditionally, however, most Z specifications have

been created usingTexX mark-up.

5.1.1 ETpX Z Styles

There are a number ofTeX style or class files available for Z includifgzz [187, 186],

ZED [185] and Oz [118]. A specification document is prepared using a text editor and
the schemas are written using mark-up. For exampleAtdBirthdayschema in Oz style
mark-up is presented in Figure 5.1. The compitehdayBookspecification appears in
Appendix A.

The document is then processed with a style file to produce a final version of the
specification in either PostScript or Portable Document Format (PDF) which can be printed
or viewed using a suitable document reading application. This process encapsulates the
separation of content and presentation and the required rendering steps are illustrated in
Figure 5.2.

In addition to creating human readable specifications, tools can also pargégte L
specification mark-up. Most Z tools have traditionally incorporated a formatting system
and a type-checker that accepts Z specificationgTigXL For example, thduzz type-
checker checks for type-usage, syntax and scope errors in documents prepared using the
fuzz IATEX style. Other Z tools that procesgiX mark-up input includeCADIZ [206, 205],
ProofPower [127], Wizard [112],/EVES [165] and Zeta [88].

CADiZ also includes macros for creating specifications using mark-up fotraife

108

—\

W

PostScript
/ PDF

BIEX| == [BTEX| —>
7, spec style/class PS/PDF
file

viewer

Figure 5.2: Overview of the rendering process fromfg{.source document
to a final PostScript or PDF document.

.ZS AddBirthday

\ (*DBirthdayBook
name? : NAME
date? : DATE

.ZM

name? notmem known
birthday’ = birthday sor { name? mlet date? }
.ZE

Figure 5.3: Trd mark-up for theAddBirthdayschema.

typesetting tool for Unix-based systems. TAddBirthdayschema in tr& [43] mark-up

is shown in Figure 5.3.

Z Browser

The Z Browser [147, 137] is an example of a commercial Z specification browsing tool that
provides an alternative to Postscript or PDF rendering. The browser takes specifications
written in thezed style and renders them on the Windows platform using a custom-made
true-type font. A screenshot of the browser displayingAleBirthdayschema from the
BirthdayBookspecification appears in Figure 5.4.

The browser attempts to address some of the problems for users of large specifications
by providing links between data-type and schema definitions within the specification. For
example, a user can click on a schema name and the definition of the schema will then be

displayed. In addition, all the symbols are linked to an online help system which provides

109

-l

File ‘iew Window Help

=& B2 20302 2%

B Freelyps| 27 207 T)
— | _ AddBirthde
BirthdayBook 7
frmit BirthdayBook

A BirthdayBook

jo name? | NAVME
AT date? : DATE

Remind

SUCCEss name? ¢ known
AlreadyKnows

birthday' = birthday v {name? — date?}

RFindBirthday =
e Ll |

[oM 7

Figure 5.4: Screenshot of tialdBirthdayschema in the Z Browser.

information about the symbols and also the notational conventions used in Z for novice
users.

A symbol mapping file that can be edited by users facilitates the extension of the system
to incorporate othe"IpX mark-up. In addition, other applications can also use the Z
Browser as a viewer to open specifications and display Z paragraphs via the Windows
platform DDE (Dynamic Data Exchange) protocol. This facility supports the potential
integration of the browser with other tools.

A plug-in version of the Z Browser is also available for Netscape Navigator on the
Windows platform [148]. While the rendered Z symbols are hyperlinked to help files,

cross-referencing within specifications is not supported.

5.1.2 Zin ASCII

The BTEX mark-up approach to Z essentially results in two specifications — one that

is rendered and intended to be read by humans and the other a source file intended for
use by tools. There have been a number of attempts to incorporate the two to create a
representation which is both human readable, retaining as much of the visual appearance

of Z as possible, while also being machine readable. These representations are based

110

+-- AddBirthday ---
%Delta%BirthdayBook
name? : NAME
date? : DATE
|--
name? %/e% known
birthday’ = birthday %u% { name? %|-->% date? }

Figure 5.5: Z Standard Email mark-up for tAddBirthdayschema.

on simple ASCII characters so no special tool support or rendering is required. The
specifications can be easily incorporated into email and also facilitate the use of Z by
people who are not familiar witiIeX, for example, some university student groups. The

AddBirthdayschema in Z-standard email mark-up is shown in Figure 5.5.

The Alloy notation was briefly discussed in Section 4.1 and it represents an example
of a Z-like ASCIl-based language. Alloy is a lightweight formal method based on Z that
provides a straight forward mapping into UML. The notation is also supported by the Alloy
constraint analyser tool, formerly known as Alcoa [106]. While Alloy is only Z-like, ZSL

is an example of an actual ASCII-based Z notation.

ZSL

ZSL is an ASCII-based Z notation that is as mathematically expressiva@gsrhark-up

but not as visually expressive. ZSL has two styles: a text style which is very similar to
the BTEX mark-up shown in Figure 5.1; and a box style which is closer to the traditional
rendered form of Z. ThAddBirthdayschema in ZSL appears in both the “text” and “box”

styles at the top and bottom of Figure 5.6 respectively.

ZSL is designed for use with the ZTC [110] type and syntax checking tool and is also
supported by the ZANS animation tool [111]. In addition to ZSL input, the ZTC tool also
accepts specifications written in either thed or Oz styles. ZTC can also be used to

translateATpX mark-ups into ZSL.

111

schema AddBirthday
Delta BirthdayBook;

name? : NAME;
date? : DATE;
where

name? notin known;
birthday’ = birthday Union {name? -> date?}
end schema

--- AddBirthday --------------"""""-
| Delta BirthdayBook;

| name? : NAME;

| date? : DATE;

| name? notin known;
| birthday’ = birthday Union {name? -> date?}

Figure 5.6: ZSL mark-up for thAddBirthdayschema in both the “text” (top)
and “box” (bottom) styles.

5.1.3 Zonthe Web

While ASCII-based representations facilitate communication via email or in newsgroups in
a text-only form, there has also been work to present Z in a rendered form on the Web. As
Ciancarini, Mascolo and Vitali [36] point out there are a number of reasons that support the
use of hypertext for representing Z. First, the relationships between the components such as
schemas within a specification can be represented in the document via hyperlinks. Second,
the ability to publish specifications on the Web supports collaboration and sharing. Finally,
the hypertext medium also facilitates the literate-programming-like notion of interleaving
text with the specifications. Knuth [120] had propodierate programsas a way of
combining source code and descriptive text into a single, compilable document. This idea
was further extended by Ryman [164] who also incorporated formal methods with literate
programs.

A first approach to representing Z on the Web is the use of in-line GIF images to

represent Z symbols in HTML documents. Jacky [108] and Stepney [188] both use this

112

approach which is platform independent and works with any browser that supports images.
Jacky also provides a script-based ta@HTML[108] which translate$TeX specifications

in either thezed or fuzz styles into HTML pages with references for embedded symbol
images. The main drawback of this approach is that the images do not scale and the
appropriate font size must be used. In addition, the images are generally of a low quality
when printed. While it is also possible to create hyperlinks to cross-reference any part of
the specification these are not generated by the tool and would need to be marked-up by
hand.

Applet-based Approaches

An alternative to in-line symbol images is the use of a browser plug-in or Java applet to
render Z within web-pages. These approaches allow text and specification to be interleaved
which supports the literate programming notion. An example from Section 5.1.1 is the Z
browser plug-in, however, this particular implementation has two disadvantages. First, it
is both platform and browser specific, and second, it does not support hyperlinking within
specifications.

The work of Bowen and Chippington [27] and Ciancarini, Mascolo and Vitali [36]
are both applet-based approaches that use the Z Interchange Format (ZIF) [79]. ZIF
is a Standard Generalised Mark-up Language (SGML) [101] based representation of Z
proposed in an early draft of the Z standard for exchanging specifications betvieeerdi
machines and tools [79]. TheddBirthdayschema in ZIF mark-up is shown in Figure 5.7.

The format, however, ultimately provedficult to maintain [211] and was not included in
the 1ISO Standard. More recently, an XML alternative based interchange format has been
proposed which is discussed in Section 5.1.3.

Ciancarini et al. have creatédsplets— display applets — that allow HTML extensions
to be declared and rendered in web-browsers. One of their extensions supports the display
of Z specifications in ZIF and is supported by a tool caledi2HTML The tool transforms
specifications written using Oz styRIEX mark-up into a corresponding HTML document
that contains the corresponding ZIF representation. Within the document both the ZIF tags

and their syntax are defined along with the actual specification as parameters to an applet

113

<schemadef>
AddBirthday
<decpart>
<declaration> Δ AddBirthday </declaration>
<declaration> name?: NAME </declaration>
<declaration> date?: DATE </declaration>
</decpart>
<axpart>
<predicate> name? ∉ known </predicate>
<predicate> birthday’ = birthday &uni; {name? ↦ date?} </predicate>
</axpart>
</schemadef>

Figure 5.7: Z Interchange Format mark-up for edBirthdayschema.

which loads the appropriate displet for rendering. Hyperlinks are also automatically created
between data types and their declarations and standard HTML can be interleaved within the
specification.

Bowen and Chippington’gDisplay applet also renders Z specified in ZIF. The
specification can be provided in-line as a parameter to the applet or as input from a separate
file. Their approach does not automatically create hyperlinks between specification
components and the Z symbols are implemented as GIF images.

While both of these approaches use the now-deprecated ZIF, the work was conducted
during the period in which Z was undergoing standardisation. At the time the SGML-
based ZIF was an obvious choice for integration with HTML which is also an application
of SGML.

MathML

MathML [221] is an XML-based mark-up language for rendering mathematics on the Web
and XML, like HTML, it is also based on SGML. This presents another possible rendering
approach for the required Z symbols. MathML is currently supported by the Netscape,
Mozilla and Amaya browsers, however, other browsers still require plug-ins [222].
Unfortunately for the aforementioned applets, MathML was not an implementation option.
MathML version 1.0 was only released in June 1998, by which time papers describing the

applets were already being published.

114

While MathML removes the need for plug-ins for most browsers, another approach that
moves rendering responsibility to the browser is the use of Z-compatible fonts. Prior to the
inclusion of Z symbols in Unicode font-based rendering was haphazard because it relied
on custom fonts that may not be available on all platforms or individual fonts may have
used dfferent character mappings for the same symbol. The inclusion of Z symbols in the
Unicode standard means any browser with a suitable Unicode Font can now reliably render
the required symbols and the responsibility for rendering can be shifted to the browser

itself. This is the approach taken by the Z Mark-up Language — ZML.

ZML

ZML is an XML representation for Z originally developed by Sun, Dong, Lui and
Wang [195, 194] at the National University of Singapore. They chose XML over MathML
because their original aim in ZML was to provide a Web environment as close as possible
to the Oz ATEX style for Object-Z to minimise translation requirements. They argue that
not only are the schema boxes moréidult to construct in MathML but also the large
number of tags which focus on the structure of expressions detracts from MathML'’s use for
model abstraction. Figure 5.8 presents AwglBirthdayschema in ZML and the complete
BirthdayBookspecification in ZML, ATEX and rendered form appears in Appendix A.

The eXtensible Stylesheet Language (XSL) [220] covers a family of languages used
for processing XML documents. One of these languages — XSL Transformations (XSLT)
— can be used to transform one XML document into another XML format or to transform
XML into HTML. ZML makes use of XSLT to transform the XML-based specification into
a HTML document that can then be displayed in a web-browser. The process is illustrated
in Figure 5.9. An XSL stylesheet describes the transformation rules which are then applied
via an XSLT processor to produce a HTML version of the specification. Note the parallel
with the process required for specificationAmgX mark-up from Figure 5.2.

The structure of XML documents can be described using one of two formats: either a
Document Type Definition (DTD) which originated in SGML; or XML Schema [223] —
an XML language for describing the structure of XML documents. ZML makes use of both

formats. The structure and syntax of ZML is described using XML Schema and this can

115

<schemadef layout="simpl" align="left">
<name>AddBirthday</name>

<type>BirthdayBook</type>

<decl>
<pname>name?</name>
<dtype>
<type>NAME</type>
</dtype>
</decl>
<decl>
<name>date?</name>
<dtype>
<type>DATE</type>
</dtype>
</decl>
<st/>
<predicate>name? &nem; known</predicate>

<predicate>birthday’ = birthday &uni; {name? ↦ date?}</predicate>

</schemadef>

Figure 5.8: ZML mark-up for thé&ddBirthdayschema.

) N R
<zml>§ + <st>§ — <html>

foy u frrres? o+ coe)

XML stvlesheet HTML

browser

Figure 5.9: Overview of the rendering process from a ZML source document

to a final HTML document. Note the parallel with Figure 5.2.

116

2 Web browsing formal specification - Microsoft Internet Ol

File Edt ‘ew Favorites Tools Help ﬁ
dmEack - = - @) at | @search [ElFavorites Media % | =

address I@ 2\ Templ DemaiBirthdayBook. xml# AddBirthday j a0

—AddBirifrday

A BirthdfayBook

name? : MAME
date? DATE J

o

name? & known
birthday' = birfhday u finame?, daie 7)}

—FindBirthday _—

= BirthdayBock il
e - AN TE LI
A

|2j Done ’_ ’_ l_ |@. My Camputer

Figure 5.10: Screenshot of tH&rthdayBookspecification rendered using
HTML and Unicode in a web-browser. Th&ddBirthdayschema is shown.
Note the underlined hyperlinks used for schema and data-type definitions.

be used by XML-aware tools and browsers to validate the syntax of a ZML specification.
ZML also provides a DTD to describe mappings betwéégdstyle Z symbol names (e.g.

uni for set union), and their corresponding Unicode charact&22a). HTML supports
Unicode for character encoding so a browser with a Unicode font can render the required
symbols in a HTML version of the specification. Figure 5.10 presents a screenshot of the
BirthdayBookspecification displayed in a web-browser.

Client-side XSLT processing has been available since version 5 of the Internet Explorer
web-browser and Microsoft also provides a 23 Megabyte TrueType Unicode Arial font
in their Office 2000 distribution. Equipped with these two tools it is possible to render
a ZML specification directly in the browser as illustrated in Figure 5.11. In terms of
platform independence, the ZML can be rendered in any browser for which a Unicode
font is available and the XSLT processing can be performed server-side to make ZML
specifications available to older browsers that do not support XSL.

In terms of the arguments put forward by Ciancarini et al. for using hypertext-based

specifications, ZML allows descriptive text to be interleaved with the schemas in a ZML

117

XML stvlesheet

browser

Figure 5.11: The XML to HTML transformation via XSLT shown in
Figure 5.9 can be performed within the browser.

document and hyperlinks to schema and data-type definitions are automatically created
during XSLT processing. In addition ZML also provides automatic expansions fonthe *

and ‘E’ conventions, schema calculus, and inheritance in Object-Z. This functionality is
achieved by exploiting the match facilities in XSL to locate the required definitions within

the specification.

Figure 5.12 presents two screenshots of Riemindschema from th&irthdayBook
specification as displayed in a web-browser. The top schema shows the unexpanded linear
form. Note that theRemindand Successchemas are presented as hyperlinks back to
their earlier definitions in the specification. THh&'‘icon denotes that an expansion of
the schema is available. Clicking on the icon produces the lower schema showing the
expansion of the schema composition. The schema can now be collapsed back to the linear
form by clicking on the &' icon. Alternatively, the schema can be further expanded to

make the= shorthand explicit.

Although a font is used to display and print the Z symbols, ZML still makes some
use of images to render schema boxes. The scalability is only limited, however, by the
available Unicode font sizes and in addition to Z and Object-Z, ZML also supports the
Timed Communicating Object-Z (TCOZ) notation [133, 134].

This initial version of ZML was influenced not only by Spivey’'s version of Z [184],

but also by Object-Z [174] and TCOZ [133]. The XML element names were chosen to

118

RRemind 2 ¢ Ramind A Success) L]

!

ZBirthdayBook
foday?: DATE
cards! : PNAME
resultl : REFORT

~RRemind

(
cards! = {n - known [birthday(n) = foday 7}
A

resulff = ok’

)

Figure 5.12: Two screenshots of tRRemindbirthday schema illustrating
schema expansion in ZML. The top schema shows the unexpanded linear form.
Note the B’ expand andE&’ collapse icons.

provide a straightforward mapping frofleX specifications and both animation and type-
checking tools based on the format have been reported [51, 196]. Furthermore, Sun et al.
have also demonstrated techniques and tools to project Object-Z ZML specifications into

UML [195].

An alternate, more detailed version of ZML for machine interchange has also been
defined. In contrast with Figure 5.8, Figure 5.13 presentAt@Birthdayschema using
the fully annotated form of ZML [192, 49]. This version of the mark-up has a more
extensive tag set. Rather than consisting of the traditional declarative part and a predicate
(formula) part the schemas now contain a list<afeclaration> and <predicate>
elements. In Figure 5.8 a predicate tag contains a complete predicate however the new
version requires each atom to be explicitly identified via tags. The transformation from
a BTEX representation of Z into this version of ZML is no longer quite so “trivial”.
Additionally, an updated version of the “interchange” format based on Standard Z has also

been produced [50].

119

<schemaDef>
<name>AddBirthday</name>
<deltalist>BirthdayBook</deltalList>
<declaration>
<variable>name?</variable>
<dataType>
<type>NAME</type>
</dataType>
</declaration>
<declaration>
<variable>date?</variable>
<dataType>
<type>DATE</type>
</dataType>
</declaration>
<predicate>
<expression>
<varName>name?</varName>
</expression>
<relationSym>nem</relationSym>
<expression>
<varName>known</varName>
</expression>
</predicate>
<predicate>
<expression>
<expression>
<varName>birthday</varName>
</expression>
<postfixExpr>’</postfixExpr>
</expression>
<relationSym>=</relationSym>
<expression>
<expression>
<varName>birthday</varName>
</expression>
<exprConnSym>uni</exprConnSym>
<expression>
<left>{</left>
<expression>
<left>(</left>
<expression>
<expression>
<varName>name?</varName>
</expression>
<exprConnSym>, </exprConnSym>
<expression>
<varName>date?</varName>
</expression>
</expression>
<right>)</right>
</expression>
<right>}</right>
</expression>
</expression>
</predicate>
</schemaDef>

Figure 5.13:. TheAddBirthdayschema marked-up using the “interchange”

version of ZML.

120

Other XML-based Z Representations

As with the plethora ofATEX and ASCII mark-up languages for Z there are also a number
of XML-based alternatives to ZML. These representations are typically associated with
tools and are more aligned with the “interchange” version of ZML described above.
Z/EVES [149], for example, uses an XML interchange format for passing specifications
between tools. Wordsworth [231] and Toyn [211] have both proposed DTD-based XML
representations for Z. Wordsworth’s implementation is based on Spivey’s notation while
Toyn’s representation for Standard Z was heavily influenced by the abstract syntaxes of
both Zeta [88] and his owADIZ tool [205]. CADIZ is able to export specifications in
XML format.

Most recently, however, a new version of ZML has emerged whose authors include
Toyn, Sun and Dong from the National University of Singapore, and Martin [135] of the
Community Z Tools initiative, among others [211]. This annotated interchange notation
is defined using XML Schema but is largely based on Toyn'’s earlier DTD representation.
It effectively represents an XML-based alternative to ZIF which was ultimately dropped
from the Z Standard. The format’s authors hope that in the future this version of ZML may
become an integral part of the ISO Z standard.

Despite this recent advance, however, Section 5.3 describes the implementation
of a prototype specification navigation and visualisation tool that exploits the initial
implementation of ZML in combination with an open-source FCA tool. There are a number
of reasons for using ZML and the early version in particular. First, ZMieaively
permits both the editing and visualisation of Z specifications from a single document.
Although transformation to HTML is still required this can be handled transparently
and automatically by the browser using XSLT. Browser-based specifications can also
be delivered and shared online and the hyperlink anchors can be exploited by tools as
a way of displaying any schema or data-type declaration within a ZML specification.
Furthermore, ZML automatically creates intra-specification hyperlinks and supports the

automated expansion of schema inclusions, calculus and inheritance.

In addition to the reasons outlined above, the initial version of ZML was chosen to

121

implement the tool prototype because the direct mapping betweefilfxenhark-up and
the initial version of ZML makes transformation from existifggX specifications easier.
The mark-up is also simpler to read which aids debugging. Debugging is further supported
by the direct correspondence between the two mark-ups.

Having introduced ZML, and discussed some of the representation issues with Z, the
next section now turns back to FCA. Section 5.2 provides an overview of FCA tool support
before the implementation of the specification navigation and visualisation tool is discussed

in Section 5.3.

5.2 FCA Tools

This section provides an overview of FCA tool support. These tools reflect the
recent history of computing which ranges from the early DOS-based implementation of
Duquenne’s GLAD tool in FORTRAN to platform-independent Java-based tools currently
under active development like ConExp and ToscanaJ. Both commercial and open-source
software appears in the list which also includes general-purpose and application-specific
tools.

In particular, the overview provides some insight into the work-flow and design of the
ToscanaJ tool which embodies ideas refined over a number of generations of software.
A number of line diagrams summarising features of the general tools are presented in

Section 5.2.9.

5.2.1 GLAD

Duquenne’s tool for General Lattice Analysis and Design (GLAD) is possibly the earliest
software tool that facilitates the analysis of formal concept lattices [54, 53, 55]. GLAD

is a DOS-based program written in FORTRAN that has been under development since
1983. The tool facilitates the editing, drawing, modifying, decomposing and approximation
of finite lattices in general and is not restricted to the analysis of concept lattices. The
lattices to be analysed can be derived from abstract mathematics or applied statistics using

techniques like Analysis of Variance. Single-valued data can also be analysed by exploiting

122

Program GLAD (C) 1992 V.Duquenne Paris. righ-handed

T:Throw t:ithread h:hammer .
racket n?cvt 3 S D
riracket B:Broom b:t.brush cap
Throw 126 106:
m:matche S:Shovel c:cap u76 hammer

s:scissors C:Cards 075 / thread

064
025 Cards!

024

035

085 034
119

Figure 5.14: A lattice diagram produced by Duquenne’s GLAD tool. The
lattice represents gluing decomposition of questionnaire results about right-
handed writers.

the classic correspondence between lattices and binary relations identified byfHit®fho

Lattice diagrams can be output directly from GLAD in the Hewlett Packard Graphics
Language (HPGL) [30] — a vector-based language designed for plotters. Figure 5.14
presents a line diagram produced by GLAD which originally appears as Figure 2 in a
paper describing the application of Galois lattices to behavioural genetics [55]. The lattice
represents ann-gluingdecomposition of questionnaire results about right-handed writers.
Un-gluing breaks a large lattice into smaller lattices by separating them along common

substructures [78].

GLAD contains a large number of features, many of which are undocumented and it
also supports “scenarios” which represent a form of macro. These scenarios can be used to

regenerate and manipulate a lattice by recalling the list of commands used to construct it.

123

[%]M5-DOS Prompt

ICONTEXT INPUT: ohject: ¢ HMercuryd 1. zmall) :attribute

Planets
¥ m= 7

help menu
A = Ctrl-n :
change menu
M = Ctrl-N :
change names - . Hercury
Uenus
move SRR Earth
uith Tt e Jupiter Main menu: Last choice: D
array 6.. 2. Saturn Context in processing: Planets
of numbers - HH. Uranus : Display of parameters
- - NEP;““E : Context editor {input-change a context?
iiniaiaiainininiaiaiaied ---Aa- rlute : Read a new context from disc
: Read concepts Cand implications in ancient fowrmat)
: Save context you have worked on
: Bave lists of concepts,. predecessors and successors
: Print or display data
: Mames of attributes. objects and-or the context
: Change context data
: Implication menu {except for options M and E helow)
: Reduce context

3
£3
=3

[%]M5-DOS Prompt

Print of the concept list of the contextPl : Lattice: calculate set of concepts /predecessor/successor list....

: Calculate implications with independent premises
: Calculate proper implications
: Calculate attribute order
: GCalculate number of concepts
b LSl n o : Delete calculated data sets
PUE parpp sel oo <ESC> : Quit program
ceaMitatl mdan nm
unratunuu airef <o Mumber of available hytes: 251576 Your choice:
t lugaaso
Imerr>n

SCHROomMIcC S~ Zo-nEEmT

M J N mn

I T U Wb

Press <RETURN>

Figure 5.15: Three screenshots of the DOS-based Conlmp tool. The context
editing screen is shown top left, the display of concepts at bottom left and the
main menu on the right.

5.2.2 Conlmp

Conlmp Contexts and Implications) is another DOS-based tool implemented by
Burmeister [32] who started development in 1986 on an Apple Il computer. While Conlmp
is purely text-based and provides no graphical output for lattices it also supports a wide
range of features for manipulating contexts and provides concept listings which can be

used for drawing line diagrams by hand.

Three screenshots of the DOS-based Conimp tool are shown in Figure 5.15. The top
screenshot shows the planets example from Table 1.1 in the context editor screen. The
main menu displaying the large number of available options is shown centre right while the

concept list is shown at the bottom.

The Duquenne-Guiges-basepresents a canonical base of valid implications for a

124

Figure 5.16: Screenshot of the planets example from Figure 1.2 rendered using
Diagram— a DOS-based tool that supports additive line diagrams.

given context and this is computed and used extensively within Conlmp. Interactive
attribute exploration is supported which can be used to derive both the Duguenne-Guiges-
base and a typical set of objects as described in Section 1.5.7. In addition, a three-valued

logic that allows fortrue, falseandunknownvalues can also be used.

The round-trip engineering work of Bojic and Velasevic [21] was discussed earlier in
Section 2.3. By adapting the output from the Microsoft Visuat-@rofiler they were able

to use Conlmp to analyse their data.

While Conlmp supports single-valued contexts another tool cMBA (possibly from
the German for “Many-valued FCA":MehrwertigeBegriffsAnalyse”) can be used to scale
and pre-process many-valued contexts [93]. In addition, contexts can be exported from
Conlmp in the so called “Burmeister Format” (".CXT’) and rendered using another DOS-
based tool calle®iagram[93]. Figure 5.16 presents a screenshot of Diagram. The use of
separate tools for the tasks of data preparation, context creation, and line diagram rendering

is also reflected in the classic FCA toolssonpa and ToscanA.

125

5.2.3 Axaconpa and ToscaNa

Anaconpa and Toscana are tools used for building conceptual knowledge systems on top

of data stored in relational databases. As Wille explains:

The name “bscana” (= Tools of ConceptAnalysis) was chosen to indicate

that this management system allows us to implement conceptual landscapes
of knowledge. In choosing just this name, the main reason was that Tuscany
(Italian: TOSCANA) is viewed as the prototype of a cultural landscape which
stimulated many important innovations and discoveries, and is rich in its

diversity and attractive for wandering in [227].

Figure 5.17 presents an overview of the creation of a conceptual knowledge system
as described by Becker and Hereth [16]. The process typically starts with the data to
be analysed which is stored in a relational database. A conceptual system engineer uses
knowledge from a domain expert to create queries in the form of conceptual scales using a
conceptual system editof hese scales essentially capture the expert’s knowledge and the
information is stored in @onceptual system fileA user can then exploit the conceptual
scales to retrieve or analyse data from the database ustogceptual system browser
In traditional Toscana systems Aaconpa is the conceptual system editorpstana is the
conceptual system browser, and the data is stored in a Microsoft Access database.

Anaconpa is a tool for the creation and editing of contexts, line diagrams and scales.
Figure 5.18 presents a screenshot ahdonpa creating a version of the line diagram from
Figure 3.1. The context, scales and line diagrams are saved in a conceptual schema file
which is then used by dscana to analyse the data in the database. WhibecAna users
cannot create new scales, the scales can be composed to produce nested line diagrams.
There are three versions obscana based on Vogt's €+ FCA libraries [218, 89] and

more recently a Java-based version — ToscanaJ.

5.2.4 Toscanal

Toscanald [15, 16] is a platform-independent implementation wstska that supports

nested line diagrams, zooming and idglér highlighting. Originally part of the Tockit

126

conceptual conceptual
system editor data system browser

Figure 5.17: The dscana workflow.

project [14] — an open sourcdtert to produce a framework for conceptual knowledge
processing in Java — ToscanaJd is now a separate project [15].

In the context of Figure 5.17, ToscanaJd represents the conceptual system browser while
the conceptual system editor role is filled by two toolsStenaandElba. The two tools
can be seen asMAconpa replacements that are both used for preparing contexts and scales,
however, each represents &elient workflow. Elba is used for building ToscanaJ systems
on top of relational databases while Siena allows contexts to be defined using a simple point
and click interface. In addition, Siena provides the facility to import data nacézpa
*.CSC’ format, Conlmp’s Burmeister *.CXT’ format, and the XML export format from
Cernata The Cernato tool is introduced in Section 5.2.5.

ToscanaJ can be used to analyse data in relational databases via ODBC (Open Database
Connectivity)JDBC (Java Database Connectivity) or, alternatively, an embedded relational
database engine within ToscanaJ can be used. Line diagrams can also be exported
in a variety of raster and vector-based formats including Portable Network Graphics
(PNG), Joint Photographic Expert Group (JPEG), Encapsulated PostScript (EPS), Portable
Document Format (PDF), and Scalable Vector Graphics (SVG). Figure 5.19 shows two

screenshots of the Siena editor and ToscanaJ and except where noted otherwise the line

127

=

Fle Edit Context Generste MWindow Options Help

ne] e [== e T Tl

- (AN R - P P i
type of ticket 0720 =] | | falre S”U,Ct ! H ! multi-trip

reissue ticket (0/8) initial value |

__ [ralue reraining | .

X updalg fare struc
uy Season

type of ticket
expiry date
value

[reissue ticket

passenger
ticket

trip

day

single trip
initial value
multi-trip
number

walue reraining
monith

period

week

4" |

P IS A B B

[00 (208) Cape [Num [ins [Del [Drag [Text

Figure 5.18: Screenshot ofniconpa showing the formal context and line
diagram windows. Note that the line diagram is the same as Figure 3.1 which
was rendered using Toscanald.

diagrams in this thesis were produced using Siena and Toscanald.

An XML-based conceptual schema file (.CSX) is used to store the context and scales
produced by Siena and Elba. In addition, an extensible viewer interface allows custom
views within ToscanaJ to be defined as well as allowing external data viewers to be
specified. The formal specification browser described in Section 5.3.3 makes use of this

feature and further details are presented in that section.

The layout and manipulation of line diagrams in Siena and Elba is implemented using
ann-dimensional layout algorithm in which each attribute in the purified context is assigned
to a vector [13]. The layout is then projected onto the Cartesian plane using standard

parallel projection and the approach is based on the algorithm used in Cernato.

128

& extended-nesting - Siena I =] o

File View Help
Diagrams: : M mt-— ~Grid Zoom ~Edit
Data Types W [v] use + - ’V + - | Context... | | Description...
Function Type :
Composition DataT fes !
composition-plus : .

éé o 1

InitBithdayBook |

{NAME:X [{REPORT:X}

I I
{RemoveBirthda

| Success|

[14 & extended-nesting - Toscanal _Of x|
I.DATE X File Diagram View Help
Bl i | Open... || Go Back one Diagram ‘ | Analysis History...
FindB.irthday I Data Types : Data Types
| AddBirthday | [Function Type]
.| |Remind VI | [Composition R
: BirthdayBook || | compasttion-plus InitBirthdayBook]

Remove RAC

Duplicate "E

Add Selected

Data Types

RemoveBirthda

BirthdayBook Notinown
ModifyBirthday Alrgadylinown

Remind v
AddBirthday |®

RFindBirthday
RRemind
RAddBirthday

Figure 5.19: Two screenshots showing the Siena editor top left and Toscanal
version 1.1 lower right. Note the diagram preview shown in the bottom left
corner of the ToscanaJ screenshot which can be used to preview conceptual
scales.

129

#% mass-trans1 - Cernato =1ol x|

File Wiew Insert Help

INERIEE ==

Object 5 of 20 | reissue ticket I update fare slluci by single: I buy multi I buy season I <Mew Attribute: I;I
Aftribute 2 of 5| Boolean | Boolean | EBoolzan | Boolean | Boolsan
i ks ®
aloilichel il Diagram viewer - Cernato | m il
expiry date =)) 3
Diagram Yiews Options

value »

fare stuct * Categories:

station :

<not assigned>
fare b
network *
Updale fare shucture: % |1 .

passenger ¥ \‘] buw rulti: ¥

T w Ieissue l\ctsel >< - g

trip * S buy single: ¥ 1 R

£a] expiry date 1 2 2 i maonth 3

single tip period

inial value Eoch

multi4rip

mber tpe of ticket |1 1 year il

wvalue remaining

monhth

period - -

—

_—

year Walue Groups

<New Object> = : Properly | Value Group

rip

I} ticket 1] "

Press Return ko change value,

<< Add all I

Figure 5.20: Screenshot of the Cernato context and line diagram windows.
Note that the line diagram is the same as Figure 3.1 which was rendered using
Toscanal.

5.2.5 Cernato

Cernato is a commercial FCA tool developed by Navicon [144] that combines some of the
features of Aiaconpa and Toscana into a single tool. Users are presented with a familiar
spreadsheet-like interface for creating contexts and data can be imported and exported in
Comma Separated Value (CSV) format which facilitates the analysis of data from genuine
spreadsheet applications. A screenshot of the Cernato context editing and diagram windows
is shown in Figure 5.20.

Line diagrams are constructed incrementally in Cernato and the layout is animated
by default. Figure 4.14 in Chapter 4 depicts the animation of a line diagram in Cernato.
Zooming and the construction of scales, which are known as “views” in Cernato, are also
supported, however, nested line diagrams are not. In addition to the CSV jexpantt
facility a custom XML format can also be used. Furthermore, line diagrams can be exported

in a number of raster-based image formats, contexts can be saved as HTML tables and

130

E=
Files
DjeE kel UU
“Contexts | = A [B] ¢ D E [__F G H
= MNAME DATE REFQRT Aftr 4 Aftr & Altr 6 Aftr 7
@ [Contexts il =G
:; vEo X X
[BirthdayBook.cex g o InitBirthday..
_? AddBirthday 4 X
i indBirthday
H FindBirthd:
R R T i o0 ||Reming X X
Parameter Walue A |[Buccess X
Shaow arrow relati.. don't show AT [|Adreadykn... X X
Chbject count 16 @ MNotknown x x
atiibute count 15 O |RAEirn.. | X X A
‘<7=' RFindEinh.. X X X
= RRermind x X P4
st Oh 12
U ol &cuncept Explorer =10l =]
on Files
B e e
7: ontexts 0| ame s selecte
__"‘ Context ! B | Isselerted |
-l Context | @ F Contexts MAME [v [
D BirthdayBook.cex w DATE =
; [InitBithdlayBook | Eﬂom % =
| Atr
B MNAME W Atr & (]
S @ ’ Natre] -
Layaut aptions | Suceess i = =
DRI | e | : Select all attributes |
Parameter Value : Wams | 15 EE‘|.;;.D.{Q.H
Atribs Show labels ’-,, 55 FindEithday [v] [a
Objects Show [abels ®% B\ﬂhdéyBaok o AleE“VK”UWﬂ | & =
Layout Minimal intersect AddBirthday NotKnoWn P i | |
Draw node ~ {0 own ohjects @; FindBirthday | Alreadyiknawn [v] #
Draw edge 0One pixel Remind §§ Motikngwn [i7l :
Highlight Filter & Ideal @g RAddBmhdav RaddBirthday vl |
Grid Size X a0 RFindBifhday |RFinciBirthday [l
Grid Size Y 60 ‘|RRerning v |~
Mode radius 12 ~| =
[I I vl Select all ohjects
L Context Editor L Lattice line diagram |

Figure 5.21. Two screenshots of ConExp showing the “context editor” pane
(top) and the “lattice line diagram” pane (bottom). Note that the line diagram in
the lower image is the same as Figure 4.3 which was rendered using Toscanad.

Cernato is also able to export completesdana systems.

5.2.6 ConExp

ConExp ConceptExplorer) [234] is another Java-based, open-source FCA project. Like
Cernato, ConExp combines context creation and visualisation into a single tool. Two views
of the ConExp interface are shown in Figure 5.21. The “context editor” pane is shown at the
top while the “lattice line diagram” pane appears at the bottom. Note that the line diagram
corresponds to Figure 4.3 which was rendered using Toscanal.

While ConExp does not support database connectivity, contexts can be imported and
exported in Conlmp’s “*.CXT format. A number of lattice layout algorithms can be
selected including chain decomposition and spring-force algorithms. The line diagrams

also support various forms of highlighting including ideal, filter, neighbour and single

131

concept highlighting and can be exported in JPEG or GIF format.

ConExp currently implements the largest set of operations from Ganter and Wille’'s
FCA book [78] including calculation of association rules and the Duquenne-Guiges-base
of implications. The context editor can display the arrow relatgppdm andg ., m, and

interactive attribute exploration is also supported.

5.2.7 IMPEX

IMPEX is a DOS-based tool that also provides attribute exploration. It is based on
algorithms by Ganter [75] and it can calculate implications with background knowledge
either automatically or interactively. In addition to a custom ‘.DAT’ format for reading
contexts and implications IMPEX can also import and export contexts in *.CXT’ format.

All output is written to text files which can then be viewed using an inbuilt text-editor.

5.2.8 Galicia

Galicia, the Galois Lattice Interactive Constructor [212, 213], is another Java-based FCA
tool that provides both context creation and visualisation facilities. Galicia’s heritage lies
in a series of incremental data mining algorithms originally entitledGi#e.ors L arTice-

BASED INCREMENTAL CLOSED | TEMSET APPROACH and also drie data-structure-based version
called GiLicia-T. These incremental algorithms were used for mining association rules in
transaction databases [215, 214] and form the basis for the incremental construction of
lattices in GaLicia.

Both single and many-valued contexts can be analysed in GaLicia. In addition, binary
relationships between objects can also be described via a context and stored using Galicia’s
Relational Context Family (‘.RCF’) format [97]. These inter-object relationships can
be used to produce views like Figure 4.6 showing the relationships between schemas.
A number of diferent lattice and Galois sub-hierarchy construction algorithms are also
supported.

Galicia provides two lattice layout mechanisms including a “magnetic” spring-force

algorithm. The lattices can also be viewed using a novel, rotating 3-Dimensional view

132

é 0 5 %} >
o E=1. n
2lEl g |12 & |23 8 32 g
Zlgl & |25 S S8 © 2| f |Bl2
= |9 9 |= w x o L1 3
£ 55| § (8|S 5 |§E £ |§| & |28
g olgl 2 (g2 2 5| 8 |5 5 |El°
2 sSls| & |E|8 S g5 ® £ & |5le
(] 0|0 < =< @) oo [a) O O |0
Conimp DOS, Atari (Linux) | x extended | x three-valued X X
MBA DOS, Atari X many-valued
Diagram DOS X |DOS
Cernato Windows 9x/NT many-valued X
Concept Explorer Java 2 basic | x |x binary X X
Anaconda Windows 9x/NT, Atari binary X | X X | Win | x
Toscana3 Windows 9x/NT ODBC| X | Win |x
Toscanal Java 2 JDBC | x | Java | X
CXT2CSC DOS (Linux) X
CSC2CSX DOS (Linux) X

Table 5.1: Multi-valued context summarising tool features frornsRtke’s

web-site [153].

5.2.9 Generic Tools Summary

133

abstractions introduced in Section 4.3 of Chapter 4.

to include all of the tools described in Sections 5.2.1 to 5.2.8.

In addition the one-

where the nodes are laid out on the surface of a sphere. Galicia can be run as a stand-
alone application or it can be used via the Web as a Java applet running in a web-browser.
Figure 5.22 presents a screenshot of Galicia running as a stand-alone application. The

trellis, or lattice, window is shown top right and the context editing window at the lower

While the preceding sections introduced the generic FCA tools this section now provides
an overview of their features via a number of concept lattices. As a starting point Table 5.1
presents a context compiled byiBthke as part of the requirements analysis process for

the Tockit project [153]. This multi-valued context summarises the features of a number

of existing FCA tools. The derived one-valued context in Table 5.2 extends Table 5.1
valued context also includes additional attributes for image export formats and the FCA
An overview of the basic functionality provided by the tools is presented in Figure 5.23.

The line diagram is based on a sub-context of Table 5.2 and summarises the tools’ ability

to edit, view and print diagrams, edit contexts, access a database, and export images. Note

&Gudin Lattice Alg. - New Relation - #0fNodes = 12 101 x|
File Display
[Quality -Update
+ 1=

+ E={Earth, Jupiter, Mars, Meroury, Meptune, Plita,
@ 0 I\.’.!

Format

@ 0" @ CIFit [optimize

&) 8 {n &) o] Magnetism
Time sleep F——m
Tension =L]
Repulsion —

& |=Har larme medinm mannfs1 near, no moon, 9 - _
. : Fix first Fix last
&Euntext Name : Planets Example - Ellll O O
File Edit Algorithms Console [Relation] Mouse
_Planets | Inter Object Relation : Planets / Planets | D
A =] cC] E F G H)
Planats small medium large near far moan(s) ho maah Rotation ——
Mercurny W 1] 0 K 1] 1] X
Wenus x 1} 0 H 1} 0 H
Earth X 1} 0 X 1} X 0
ars 5 1} 0 K 0 x 0
Jupiter 1] 1] LS 0 * * 1]
Saturn 1] 1] He 0 A A i
Lranus 0 X 0 0 x X 0
Meptune a kS 0 0 X kS 0
Fluto x 1} 0 0 x s 0
s B — =
[This Algorithm is not yetimlemented | I
Start: Godin Lattice Alg. on relation named Inter Object Relation : Planets | Planets B
Galicia ... Stated

Figure 5.22: Galicia screenshot showingrellis (lattice) window top right

and the context editing window lower left. The context corresponds to the
planets example in Table 1.1 and the lattice to Figure 1.2. Also note the tab for a
second context editing pane which can be used to describe binary relationships
between the objects.

134

c
2 O
IS 2w i &
= n 5 = x c 0 -
8 £ 35 85 |8 S5
=1 © [=areN c = = O T o
K = £ X w|l 8T |E TS O e X
o 2 s|< o ouw |2 o O< E=an]
2 = o S ols £)
£ a) x S22 |E o =
k%)) S 0l Bz L= = Q
2| 5ozl |EIE &8> |d 5 54
= 8o |22]8 |%|8|8/8|_|x|E|EIE =& s
mmzx88,gg'§gguo8;:59&9580g5 ol 5|3
= S c | |0 Elol5la 3| 3| EID DD oy 0LO
90%5-508m8:;%%%??5o.§.§.§009£&825§mo>
Z|a|S|3|IZ|0|n |Zz|N|< || 2|E|<|»|e|E |05 |8 |0 |0|~|E|0|0|s|a|0|w|u|a|h
ANACONDA X X X X|X|X|[X|X]|X X X
Cernato X X X X | x| X X | X | X X | X
ConExp X [X|Xx X | X [X X [X[X | X X[X[X
Conlmp X | X X X X X X X | X X
CSC2CSsX X X
CXT2CSC X X
Diagram X X[X | X
Elba X[X[X X X X[X[X[X[X][X X[X[X[X][X][X|X
Galicia X[X | X X [XX |X]| X X | X X
GLAD X X X | X X
IMPEX X X X X
MBA X [X X X[X| X
Siena X[X[X X X | X | X X[X[X[X[X][X|x
Toscana3 X X | X | X X | X | X X X
ToscanalJ X | X | X X | X | X X | X[X[X | XX XXX XX |X|X

Table 5.2: Derived one-valued context summarising features of the general-
purpose FCA tools.

that the attributes for GLAD have been taken from the available literature rather than the
tool itself so the summary of features may be incomplete.

At the top of the line diagram are three tools that do not provide any of these basic
features: CSC2CSX, CXT2CSC and IMPEX. CXT2CSC and CSC2CSX, as their names
suggest, are file format conversion tools. As such they are not concerned with context
editing or the visualisation of diagrams. CXT2CSC converts contexts stored in ‘*.CXT’
format into the ‘*.CSC’ format used byMconpa and Toscana. Similarly, the CSC2CSX
tool makes *.CSC’ files accessible to ToscanaJ and the associated Elba and Siena editors.
The third tool at the top of the diagram, IMPEX, is an implication and attribute exploration
tool. It does provide simple text editing facilities, however, all of the other tools categorised
with the “Context Editor” attribute provide functionality specifically for context editing.

The role of Toscana3 and ToscanaJd as viewing applications can also be observed in the
line diagram. ®scana3 and ToscanaJ do not have context or diagram editing facilities
because this functionality is provided by the correspondingcénpa, Elba and Siena

editors. Avaconpa and Elba are also the only general-purpose tools that implement all

135

1
CXT2CSC
ImpEx
CSC2CSX

Diagram View:

Context Editor:

Database A
Toscana3

Figure 5.23: Line diagram of a sub-context from Table 5.2 summarising basic
features of the generic tools.

of the basic features.

Figure 5.24 presents a line diagram based on a second sub-context of Table 5.2. This
diagram provides an overview of the general-purpose tools based on functionality relevant
to the discussion in Chapters 3 and 4: FCA abstractions, implication calculation, and
attribute exploration.

From the diagram it can be seen that while Cernate¢Ana3 and Toscanad all support
zooming and scaling there is no single general purpose tool that currently supports all four
of the abstractions. Nested line diagrams are only availableosnaka3 and ToscanaJd
while Cernato is the only tool that animates the layout of line diagrams. There is also no
intersection between tools that support the abstraction mechanisms and those that calculate
implications or provide attribute exploration.

Another one-valued context describing the file formats read and written by the generic

FCA tools is presented in Table 5.3. Again, it should be noted that the feature summary

136

1
CXT2CSC
Scaling: Diagram Implications:
CSC2CSsX

i 0
VBA Siena GLAD

Anaconda Galicia
Elba

|Nested Line Diagrams:

Animated Layout:

Attribute Exploration:

Toscana3 ImpEx
ToscanaJ Conlmp

ConExp

Figure 5.24: Line diagram summarising tool support for FCA abstractions,
implications and attribute exploration.

of GLAD is taken from the available literature rather than the tool itself and there is no
mention of the reg@vrite formats used.

A line diagram representing the file formats read by the tools in Table 5.3 appears in
Figure 5.25. There are three items of interest: the format supported by the most tools; the
tool that supports the most formats; and the tool that shares the most formats with other
tools.

The format supported by the most tools is the *.CXT’ or Burmeister format originally
used in Conlmp. This text-based format stores the details of a binary context and can be
read by seven of the tools described here. The wide adoption of the format is likely due to
a number of factors including its simplicity, the obvious need for FCA tools to store and
share contexts, and the fact that it was already in existence and being used when the other
tools were created.

Beyond one-valued contexts, however, tools also need to store and retrieve a range of
information that includes lists of implications, multi-valued contexts and diagram layouts.
For example, Diagram relies on other tools to provide contexts in *.CXT’ format. It creates
line diagrams and then saves the concept lattice layout details in a “.LAT’ file. This is the

case for many of the tools which use their own custom formats in addition to ‘*.CXT’ for

137

'S|00] 21IBuab

ay) Ag pasn sjewloy ajl ay) BuIMOYS 1X81U0d panjeA-auo paAlled :£°G a|gel

reuessol
EVNVOSO |

euaIS

vdan
X3AdWI

avio
enIes

eqi3
welbelq
JSJ¢21XD
XS020SD

dwijuo)d
dx3uo)

oleulad
VANOOVYNY/

X

X
X

X

CXT

BGR

IMP

DUQ

MIN

ECH

HIN

XXX |X[X[X[X]|X

MBA

MWK

SCH

LAT (Diagram)

CTB

Csv

Cernato XML

CSsC

CSs3

CEX

OAL

CsSX

DAT

SLF

TXT (IBM format)

BIN.XML

MVC

MVC.XML

RCF

RCEXML

LAT

XXX |X[X[X]|X]|X|X

LAT. XML

Jewod 3|l peay

CXT

BGR

DUQ

MIN

ECH

XXX |[X[X|X]|X

HIN

MBA

MWK

SCH

LAT

CTB

Csv

Cernato XML

HTML

X[X|X|X]|X

CSsC

CEX

CsX

DAT

UNI

IMP

X | X|[X]|X

IMX

SLF

TXT(IBM format)

BIN.XML

MVC

MVC.XML

RCF

RCEXML

LAT (Galicia)

XX [X|X[X[X|X]|X]|X

LAT.XML

TewnoS ajl M

138

LAT.XML
MvC
LAT(GaLicia)
SLF
MVC.XML
csc TXT

GLAD

Csv. Cernato XML CSX < RCF
RCF.XML
BIN.XML 0
CXT ToscanaJ CSC2CsX
Anaconda
Galicia
CXT2CSC
mz CT8 cs3
MWK
MBA ;
BGR Cemato Elba <
ECH :
buQ : \ CEX
HIN_lo DAT LAT(Diagram OAL
Conlm) ’ > , .
MBA < . R .
ImpEx z B
:

Figure 5.25: Concept lattice based on a sub-context of Table 5.3 showing the
file formats read by the generic FCA tools.

storing information. Ultimately this results in the surprisingly large number of formats
present in Table 5.3 where there is much “re-invention of the wheel”. The need for a
suitably flexible yet standard and therefore interoperable extension of the *.CXT’ format for
storing contexts and diagrams has been discussed within the Tockit project community [17].
While ‘.CXT’ is the most widely read format, GalLicia is the tool that reads the most
formats. Galicia reads and writes nine formats, however, four of these are simply XML
versions of other Galicia formats. For example, *“RCF. XML’ is an XML version of the
*RCF’ Relational Context Family format. In Figure 5.25 Galicia also stands out as the
only tool that does not share any formats in common with other tools — there is no file-
level interoperability with any of the other tools. In contrast to Galicia, Siena shares the

widest intersection of formats with other tools.

5.2.10 Application Specific Tools

In addition to the generic tools described in the preceeding sections there are also a number
of application-specific FCA tools. These tools can be broadly classified into two main

groups: themonolithicand themodular Tools that rely on other programs for part or

139

all of their functionality will be classified as “modular”. For example, a humber of the
application-specific tools make use of pre-existing graph drawing applications for lattice
layout. In contrast the term “monolithic” will be used to describe those tools which do
not rely on other applications to function. This does not, however, exclude the use of pre-
existing libraries within the tools code. Additionally, the term should not infer that a tool is
poorly engineered or necessarily massive, but rather that the tool has been constructed from
scratch. The next section of this chapter introduces the monolithic tools and the modular

tools are discussed in Section 5.2.10.

Monolithic Approaches

Diuwel's BASE[57] tool supports the identification of class candidates from use-cases
using the methodology applied in Chapter 3. The name is taken from the Géeman
BegriffsbasiertesAnalyseverfahren fur di&oftwareEntwicklung” which translates into
English as “concept-based analysis during software development”.

Taran and Tkachev’s [197] tool SIZID is designed to support the analysis of sociological
and psychological data. SIZID can handle multi-valued contexts and the calculation of
implications.

Cole and Eklund have implemented a number of FCA-based document management
and information retrieval tools.Warp-9 FCA[38] is a tool for managing a collection
of medical discharge documents that is implemented using the scripting and extension
language T¢Ik [198]. A medical ontology is used to index documents and the
visualisation supports folding line diagrams. The ideasWarp-9 FCA are further
refined and applied to the analysis of email in the tool CEM — the Conceptual Email
Manager [38, 39]. More recently a commercial descendant of CEM knowfadsSleuth
has also been released [66].

In Lindig and Snelting’s [132] paper on the structure of legacy code a footnote mentions
an inference-based software environment called NORA which was used to produce the
analyses described in the paper. NORA stands MO “Real Acronym”. While no
details of the NORA environment are presented in the paper, both Snelting and Lindig

have produced other tools to support the analysis of software using FCA. Snelting and

140

Streckenbach’€ ABAtool was briefly mentioned in Section 2.6.1. KABA is a Java-based
tool that implements the analysis earlier described by Snelting and Tip [178, 179]. The
name KABA is taken from the GermarKfassenalyse mitBegriffsAnalyse” which
translates as “class analysis via concept analysis” in English. Apparently “KABA” is also
the name of a popular chocolate drink in Germany.

KABA combines concept lattices with dataflow analysis, and type inference. In
particular the prototype tool supports the visualisation of horizontal decompositions in Java
classes and a 15 KLOC example is reported.

While another prototype tool that implements Lindig’s component retrieval ideas could
be considered monolithic [128], there have been a number of modular tools developed

using Lindig’sconceptdramework.

Modular Approaches

Concepts[131] is an updated version of Lindig§kConcepttool [129, 130] which is
implemented in T¢gTk. TkConcept is included here as an example of a modular tool
because it makes use of a graph layout application called Graphplace [61] to draw lattice
diagrams. TkConcept was intended as a framework for concept analysis applications that
provides basic abstractions so that software designers can focus on the implementation of
domain specific parts of an application.

Van Deursen and Kuipers [216] used Lindig®®nceptstool in conjunction with
Graphplace in the analysis of a 100 KLOC COBOL program. A relational database was
used to derive information about the application using a COBOL lexical analysis tool. The
data was then extracted and formatted for analysis eatitepts

The ConceptRefinerjool described by Kuipers and Moonen [123] also usascepts
in conjunction with a COBOL parser and a relational database. Concept refinery is
implemented using T£Tk and a version of theot directed graph drawing tool was used
for visualisation. Dot is part of the GraphViz graph visualisation package [10].

GraphViz and concepts are also used to render lattice diagrams in Eisenbarth, Koschke
and Simon’Bauhaugool [64]. Bauhaus makes use of a number of components including

the gcccompiler andyprof profiler which are glued together using Perl [151]. In addition

141

to their earlier work identifying features in web-browser code, Eisenbarth et al. have also

used their tool to analyse a 1,200 KLOC production system [63, 62].

The Cable tool implemented by Ammons et al. makes use of FCA to aid in the
debugging of temporal specifications [5]. The visualisations presented to Cable users are
implemented using the Dotty and Grappa graph visualisation tools which are also part of

GraphViz.

JaLaBA is a novel on-lineJava Lattice Building Application implemented by
Janssen [109] that uses FreedeaisDraw [73] program for lattice layout. LatDraw makes
use of a 3-dimensional spring and force layout algorithm which produces line diagrams

similar to GaLicia and ConExp.

The round-trip engineering work of Bojic and Velasevic [21] discussed earlier in
Section 2.3 clearly meets the definition of a modular tool. By adapting the output from
the Microsoft Visual G+ profiler Conimp was able to analyse their data which was then

used to update a UML model using the Rational Rose design tool [98].

Richards and Boettger et al.'s RECOCASE tool [24] is also comprised of a number of
other applications. RECOCASE uses the Link Grammar Parser [173, 172] to parse use-
cases and ExtrAns [170, 169] is used to generate the flat logical forms which are then

analysed using FCA.
The CANTO tool Code and Architecture &lalysis TOol) [7] described by

Tonella [203] has a modular architecture composed of several subsystems. CANTO
consists of a front-end for analysing C code, an architecture recovery tool, a flow analysis
tool and a customised editor. The components communicate either via sockets or files
and apart from the flow analysis tool each of the components is an external application.
Visualisations produced by the architecture recovery tool are created using PROVIS — yet

another graph drawing application based on Dotty.

Another FCA framework implemented by @valo [8, 9] and Buchli [31] is ConAn
(ConceptAnalysis) [31]. ConAn is implemented in Smalltalk and consists of a number of
tools for the creation and analysis of formal contexts. A tool caledAn PaDi(ConAn

PatternDisplayer) built using the ConAn framework is used for analysing patterns in data

142

from theMooseSmalltalk re-engineering environment [1]. Beyond software engineering
applications ConAn also represents a generic and extensible framework. Users can provide
objects and attributes (known respectivelyetmmentsandpropertieg as labels in a table

or custom Smalltalk objects can be implemented to represent the elements and properties
used by ConAn.

While the preceding sections introduced a range of FCA-based tools the next section
describes the implementation of a new tool that mirrors the modular approach taken by Van
Deursen and Kuipers. This tool makes use of a parser to extract information which is stored
in a database. The information is then formatted for analysis using an external visualisation

application. The tool is called SpecTrE — tBpedfication andTr ansformatiorEngine.

5.3 Specification Transformation Engine (SpecTrE)

SpecTrE is a tool for visualising and navigating Z specifications using FCA that implements
the ideas presented in Chapter 4. In the tradition of the modular tools described in the
previous section, the implementation of SpecTrE makes use of a number of discrete tools
and existing applications.

The SpecTrE tool performs two main functions the first of which is the transformation
of Z specifications written in Oz styléTgX into ZML. The second function is the creation
of a formal context from the specification which can then be used to visualise and navigate
the specification. Both théTeX to ZML transformation and the context creation processes
can be performed in times comparable with norm&RL processing. This is consistent
with Clarke and Wing'’s call for Formal Methods tools that work in times comparable with
compilation [37]. An overview of the process starting witl*gK source specification is
presented in Figure 5.26.

The original ETEX specification is first transformed into ZML using an application
calledtex2zml. Once in ZML format the specification can be rendered on demand in a
web-browser using the appropriate XSL stylesheet. This ZML version of the specification
is also used as input to another tool callggkc2db which parses the specification and

creates a formal context which is stored in a relational database. A conceptual schema file

143

N
— original
BIEX specification

tex2 zmll
<st> + <zml> —>

stylesheet

o 1 corem

B e o)

browser
spec2db ?

3 armomton srecncmn

<csx> —|— — | e ey VA=

Conceptual database =
Schema Toscanal

Figure 5.26: Overview of the specification transformation and exploration
process using SpecTrE.

describing the structure of the context is also created.

The conceptual schema file createddpec2db can be opened using either the Siena
or Elba editors for ToscanaJ and suitable scales can then be constructed. Toscanad can
then be used to visualise and interactively navigate the specification via the application of
conceptual scales. If a user wishes to view the original specification they can click on a
schema name in the line diagram and a web-browser will then be launched to display the
appropriate schema using the ZML version of the specification. This implementation fulfils
the aim of providing an FCA-based alternate visual representation for formal specifications
that can be used alongside existing tools. Users can explore a specification using FCA and

then “drill down” into the original specification as required.

The implementation details of theex2zml transformation andspec2db context

144

<rule id="41" type="replace">
<old>\union</o0ld>
<new>&uni ;</new>

</rule>

<rule id="42" type="replace">
<old>\uni</old>
<new>&uni ;</new>

</rule>

<rule id="149" type="pattern" >
<old>\\Delta\s+([\w]+)\s+(\\\\)?</0ld>
<new>
<type>$1&1t;/type>
</new>
</rule>

Figure 5.27: Three of the transformation rules used to translate specifications
written using OzATEX mark-up into ZML format.

creation tools are discussed in Sections 5.3.1 and 5.3.2 respectively. Issues relating to
the web-browser integration with Toscanad for viewing specifications are discussed in

Section 5.3.3 and a Graphical User Interface (GUI) front-end is described in Section 5.3.4.

5.3.1 Specification Transformation

The implementation of theex2zml tool relies on the fact that the tag names in ZML were
chosen to directly correspond with names used in the Oz <fiE mark-up. The tool
works by applying a series of transformation rules to the original specification until no
further transformations are possible. The rules are defined in an XML file and two types of
rules are used. See Figure 5.27.

Replacement rules are used to match whole words that are directly substituted. For
example, rules 41 and 42 in Figure 5.27 match on either of the two mark-ups for the set
union operatokunion or \uni which are then replaced wiuni ;.

The second type of rule uses patterns to match and transform structures using regular

expressions. For example, rule 149 would match on a line containingf@emark-up

145

for a ‘A’ schema like \Delta BirthdayBook \\” and replace it with:

<type>BirthdayBook</type>

The “id” numbers within the<rule> tags are used for debugging purposes and the
pattern rules are implemented using the GNU regexp library for Java [18]. While the
replacement rules could also be written as pattern rules the “replace” rule type is included
for convenience and readability.

ZML was used for the prototype implementation of SpecTrE because the XSL
transformation for browser rendering is performed automatically in XSLT-enabled
browsers. Server-side XSLT processing can also be used to support non-XSLT browsers.
The intra-specification hyperlinks are also automatically created and the HTML anchors
can be exploited by other applications to display any schema within the specification.
Additionally, ZML supports the automatic expansion of horizontal schemas and standard
XML parsers can be used to read and validate ZML files.

While the straightforward transformation approach described above works for the
original version of ZML the more recent annotated syntax versions would require a genuine
parser. Tools that already support existing XML representations foffet a possible
transformation path. The current XML export froBADIZ is very similar to the new
ZML annotated syntax [211]. Sun also reports thatTgd_ to XML translator is either
under development or has been developed by the Formal Specification Research Group
at the National University of Singapore [193]. Given that SpecTrE has biéectieely
implemented as a chain of tools theex2zml could simply be replaced by another tool as
required. Additionally, SpecTrE can also accept existing ZML files as input which avoids
the need for translation. Once in ZML format, however, a context can be created using

spec2db.

5.3.2 Database and Context Creation

The spec2db tool takes a ZML specification and creates a formal context which is stored

in a relational database. Given that ZML is XML-based then a generic XML parser can

146

object id attribute id

object (- has>>—"1| attribute

Figure 5.28: ER Diagram representing the database structure for storing the
object and attribute information extracted from the specifications.

be used to read the specification files rather than implementing a custom-built parser. The
Electric XML API [140] used to parse the transformation rules described in Section 5.3.1
above is also re-used Bpec2db to parse ZML.

The structure of the database used to store details of the parsed specification consists of
three tables reflecting th®, M, | structure of the formal context. An Entity-Relationship
(ER) diagram representing the table structure is shown in Figure 5.28 using the notation of
Elmasri and Navathe [65].

While the correspondence between thigect and attribute entities with the set$
andM is obvious, the incidence relatidns represented by the “has” relationship. In the
relational database model this relationship is also implemented as a table. In addition, note
that there are no participation constraints on the relationship corresponding to the incidence
relationl. This structure permits objects to be included in the context that have no attributes
and conversely, attributes that do not belong to any of the objects. In specification terms
this may be useful to explicitly represent the fact that a specification does not make use of
a particular mark-up element or operation. This functionality is further supported by the
“attribute” and “min attribute” files described in Section 5.3.4. The “attribute” file can be
used to exclude specific mark-up elements from the context while the “min attribute” file
can be used to include specific attributes even if they are not present in the specification.

Although this three table structure explicitly represents the object set, attribute set, and
incidence relation, ToscanaJ actually requires a single database table that more closely

resembles a crosstable. This structure is depicted in Figure 5.29.

147

object id object url

attribute 1 context attribute n
attribute 2 Q

Figure 5.29: ER Diagram representing the single table context used by
Toscanal.

Representing a formal context as a single database table presents a number of problems
when encoding specification details. The first problem arises because the Z notation is
case-sensitive. In the three tal@eM, | database structure the object and attribute names
are both stored as string values which are also case-sensitive. However, in the single-table
structure used to create the CSX file the attribute names become column names within
a database table. Column names in databases adhering to the SQL-92 standard are not
case-sensitive, although there appears to be some variation depending upon the choice of
database management system/andperating system platform.

The second problem arises because a number of quotation characters like ‘?’ and ‘'’
which are commonly used in Z are illegal in database column names. In most databases it is
possible to use “illegal” column names by specifying them within double quotes, however,
this feature also appears to vary with the choice of database. Reliably using attribute values
as database column names therefore requires an encoding scheme that preserves case as
well as any illegal characters. This is achieved witkgrec2db by replacing any non-
lowercase alphabet character in an attribute name by a literal representation of its Unicode
value. For example, the uppercase letter ‘A’ is encoded as ‘u0041’, ‘Z’ as ‘u005a’, and
‘' as ‘u0021’. Using this scheme the attribute naBethdayBookwould appear in the
context table as the columu®042irthdayu®042o00k. The encoded names need only be
machine readable because the CSX file stores attribute labels separately from the definition
used to query the database for the details of a specific formal concept. The encoded names

are only used for interacting with the database and the original attribute names can still be

148

ol

File Diagram View Help
| open... | nalysis History... | About Schema... |

4
data types b data types
operations 3

NAME

Add Selected

data types

Remove Last

Figure 5.30: Toscanad screenshot showing the standard “list object” view.
Note that the labels represent the databagectid numbers rather than an
object count.

<queries dropDefaults="false"> <listQuery name="Schema
Names" head=""> <column
name="Schema">object_name</column> </listQuery>
</queries>

Figure 5.31: This list-query produces the menu option to display schema
names shown in Figure 5.32.

displayed on the line diagrams.

A final point regarding the construction of the database and conceptual schema files
also concerns the structure represented by Figure 5.29. Given that the primary key from
the final database context tabledigjectid then the standard “list object” view in ToscanaJ
simply lists theobjectid numbers rather than the schema names as shown in Figure 5.30. A
“schema name” option is added to the menu via the list query shown in Figure 5.31 which
is also stored in the CSX file. If this new option is selected the database is queried and
the object namevalues (the actual schema names) are displayed instead obfbet id

numbers. The resulting menu option is shown in Figure 5.32.

149

ol

File Diagram |Yiew | Help
Open... © Show only exact matches cul-s | Analysis History... " About Schema... |
O Show all matches Cil+Shift S
dat:
ABPES [how Attribute Labels
operations =
¥ Show Object Labels
' Number of Objects Alt1
O List of Objects Alt2 InitBirthdayBook
® Schema Names L AlkE REPORT
Set minimum labelsize S
Add Selected
data types
Remind NotKnown
AddBirthday AlreadyKnown
FindBirthday
BirthdayBook
RAddBirthday
: RFindBirthday
RRemind
| Removelast |

Figure 5.32: ToscanaJ screenshot showing the “schema name” menu item.

In addition to parsing the specification and creating the database tablepetizdb
tool is also responsible for creating the conceptual schema file. Although this file is created
in the CSC format used byMconba it can be imported into either the Siena or Elba editors
to create the CSX file which is ultimately used by ToscanaJ. Siena and Elba can also be
used to create any predefined conceptual scales that a user may wish to apply.

While the transformation and context creation processes are automated, the conceptual
scales must currently be created manually before Toscanad can be used. Alternatively, a
number of standard scales based on Z language features could be set up and re-used across
projects while project specific scales can still be created as required.

Using standard lattice layouts and order embeddings it is also possible to automate
scale layout to a certain extent. Scale creation then simply becomes a task of choosing
the appropriate attributes. The choice of attributes could also be performed based on
a particular ZML tag-type or a naming convention. An example of an automatically
generated scale based on the schema input naming convention ‘?’ is shown in Figure 5.33.
Once the scales have been constructed, however, ToscanaJ can then be used to explore the

concept lattices representing the specification.

150

BirthdayBook

InitBirthdayBook
Success
Remind 'FindBirthday
RRemind AlreadyKnown
NotKnown
RFindBirthday |®
AddBirthday
RAddBirthday

Figure 5.33: An automatically generated scale based on schema inputs.

5.3.3 Browser Integration

ToscanaJd was chosen to provide visualisation in SpecTrE because it supports a number
of the required FCA abstractions including conceptual scaling, nested line diagrams
and zooming. Furthermore, ToscanaJ supports database connectivity and the Java-based
implementation means that the tool is platform independent. The source code is also freely
available so the tool could be modified as required, however, the extensible “view” interface
meant no hacking or re-compilation of ToscanaJ was necessary.

In addition to customisation via tRd i stQuery> tag described in the previous section,
Toscanad also allows custom object views to be specified within the conceptual schema file.
These views allow users to click on object labels in a line diagram and display additional
information about the objects. This view interface can be exploited to display any schema
within a Z specification by launching a browser with a URL that concatenates a reference
to the ZML version of the specification and the object name as an HTML anchor.

On the Windows platform a shell execute is available to open documents using the
default application based on the document’s extension type. While this technique can be
used to open a URL on the local filesystem lilkie \Temp\Demo\BirthdayBook.xml’
it cannot be used to oped{\Temp\Demo\BirthdayBook.xml#AddBirthday’ because

151

<views>
<objectView class="net.sourceforge.toscanaj.dbviewer.ProgramCallDatabaseViewer"
name="Goto spec...">
<parameter name="openDelimiter" value="%%%"/>
<parameter name="closeDelimiter" value="$$$"/>
<parameter name="commandLine"
value="rundl132 url.dll,FileProtocolHandler
javascript:location.href="%%%object_url$$s$"’ />
</objectView>
</views>

Figure 5.34: The Database Viewer code to implement ToscanaJ and browser
integration from within a “CSX” file. The object view enables the pop-up menu
shown in Figure 5.35 for displaying schemas within the browser.

the extension is not recognised. As a workaround for this problem the URL can be
encapsulated within some Javascript and the default browser will then be launched as the
default application. The Javascript simply opens the URL and the recroteckctView>

mark-up is shown in Figure 5.34.

The “name” attribute in theobjectView> tag adds a popup-menu option in Toscanad
that can then be used to display the desired schema using the web-browser. A screenshot
of the menu is shown in Figure 5.35. The value of the ‘ohjett attribute between the
delimiting tags$ $$ and%%% is retrieved from the database for this object and substituted in
the command line. The browser is then launched to display the appropriate schema which

is rendered automatically using ZML and XSL

The only side-#ect of this approach is that it requires Javascript to be enabled on
the user’s browser which has an associated security risk on the Web at large. This
implementation is also platform dependent; however, both the Netscape and Mozilla
browsers on the Unjkinux platform have a remote control facility that could be exploited

in a similar fashion [141].

1An example CSX file generated from tBérthdayBookspecification is available online:
http://www.kvocentral.org/software/spectre.html

152

http://www.kvocentral.org/software/spectre.html

ol

File Diagram View Help
| open... | Analysis History... | About Schema... |

4
data types b data types
operations 3

InitBirthdayBook
REPORT

Add Selected
ata types
Remind NotKnown
AddBirthday AlreadyKnown
FindBirthday
BirthdayBook |®
RAddBirthday
RE: .
5 R Change label »
View selected >| Goto spec...J
Remaove Last

Figure 5.35: ToscanaJ screenshot showing ffexeof a right mouse button
click on a schema name. Selectitgoto spec..” from the pop-up menu will
launch a web-browser displaying this schema within the original specification.

5.3.4 GUI Front-end

Although SpecTrE is implemented via a series of independent tools, a GUI front-end is
provided to assist users in the transformation and context creation process as shown in
Figure 5.36. All of the available options can also be specified via a command line interface.

A “skinned” version of the SpecTrE front-end is also available as shown in Figure 5.37.
This is activated via the-blofeld” command line option and in this mode the interface
also plays appropriate sound-samples in response to button click, startup, and exit events.

Via the GUI front-end a user can select a source specification written in either ZML
or KTEX. The database where the formal context will be stored must also be specified. In
addition the user can also optionally select two files which contain lists of attributes to be
included during the context creation process.

The “attribute” file provides a list of valid mark-up tags that are to be included in
the context if they are found while parsing the source specification. Via this mechanism

irrelevant mark-up tags can be ignored whil&@alient attribute lists could also be used to

153

’SpecTrE version 0.1b I]

- SPECIRE -

Specification: Il 1SpeciBrowse\SpivewBinthdayBook tex

Database: ITBSTE Choose Source. .. |
Min Attribute File: |min_atiributes.bd Chaoose File. . |
Attributs File: — [attributes.te Choose File... |

W Create '.C5C Qukput [~ schemas Onky

Convvert Help Cancel |

Figure 5.36: Screenshot of the SpecTrE GUI.

oy SpecTtE ¥ersion 0.1b

SPECTRE

SPECIRIEATION
DATRGASE _ -

MIN ATTRIELT
RTTRIBUTES o

E cst' » SCHEMAS ONLY
HELP MEl [KILU

Figure 5.37: Screenshot of the SpecTrE interface in “Blofeld” mode.

154

facilitate the parsing of dierent mark-ups. For example, the new ZML fully-annotated
syntax orCADIZ style XML could be supported.

The “min attribute” file contains a list of attributes that must be included in the context
even if they are not found in the specification. In some cases it can be useful to see which
attributes are not used in any schemas by specifically including them in the context.

A “create ‘.CSC’” checkbox at the lower left of the GUI indicates that in addition
to populating the database SpecTrE should also export a Conceptual Schema file. The
CSC2CSX conversion tool was originally used to convert the data into the XML format
used by Toscanald, however, both the Elba and Siena editors now support direct CSC import.

The “schemas only” checkbox is used to create contexts where both the object and
attribute sets only contain schema names. If this option is selected then all schema names
are included during parsing. Normally only those schemas involved in schema calculi
operations are included in the context. These contexts can be used to generate line diagrams

describing the relationships between schemas like those appearing in Figures 4.6 and 4.5.

5.4 Conclusion

This chapter has described the implementation of the prototype SpecTrE tool that embodies
the ideas described in Chapter 4. The chapter opened with a discussion of Z representation
issues and the ZML format was introduced. Section 5.2 then provided an overview of
a number of FCA tools including ToscanaJd before Section 5.3 described the modular
implementation of SpecTrE using ToscanaJ and ZML in conjunction with two custom tools:
tex2zml andspec2db.

ZML was chosen as the Z representation format for SpecTrE because it supports sharing
on the Web, automatic rendering in XSLT-enabled browsers, automatic hyperlinking and
schema expansion. ToscanaJd was used to visualise the line diagrams because as an open
source project the source code is readily available and it could be modified as required.
Ultimately, however, the extensible view interface facilitated the web-browser integration
without the need to modify or recompile any code. Furthermore, ToscanalJ supports

conceptual scaling, nested-line diagrams, zooming, database connectivity and it is also

155

platform independent.

Knight, DeJong, Gibble and Nakano [119] proposed a framework to evaluate the
specification of a control system for a nuclear research reactor using tlfierewk formal
methods including Z. With regards to the usability of formal methods they concluded that:

The ability to locate relevant information is a vital part of the utility of a
specification. The ability to search, for example with regular expressions is
valuable, but not dticient.

SpecTrE provides this utility via conceptual scaling, zooming, and the ability to
compose multiple scales into nested line diagrams. Knight et al. go on to state that:

The formal method should also provide structuring mechanisms to aid in
navigation since the specification document is likely to be large. In a natural
language document, the table of contents and index assist in the location of
information; many tools allow them to be generated automatically from the
text. Another useful capability seen in text editing is the use of hypertext
links to a related section or glossary entry. Formal methods must address the
usability of the resulting specification documents.

This chapter has described the implementation of a tool that can generate and
implement alternative document structuring and search mechanisms that can be generated
automatically from the specification. While it may be possible to view and read
specification properties directly from line diagrams without reference to the specification
document itself, SpecTrE also represents a powerful navigation tool that addresses the
usability of specification documents described above. Although part of this functionality
comes through the utility of ZML, the line diagrams embodffetent views or dferent
document structuring mechanisms while still retaining direct access to schemas via
hyperlinks.

The next chapter concludes the thesis and presents some possible directions for future

work.

156

Chapter 6

Conclusion

This final chapter concludes the thesis. Section 6.1 summarises the development of the
thesis and the contributions made in each of the preceding chapters. Section 6.2 then
introduces some related work to visualise software structure that has many parallels with
the approach presented here. Finally, future directions and extensions to this work are

presented in Section 6.3.

6.1 Thesis Summary

Chapter 1 of the thesis introduced the motivation for the work described here, revealed the
overall structure of the thesis, and then presented the necessary background for both FCA
and the Z notation. The motivation for this work is threefold. First, the majority of FCA
applications in software engineering have focussed on late-phase software maintenance
and re-engineering tasks. In contrast the focus of this thesis is the application of FCA to a
number of early-phase activities within the software engineering life-cycle. While formal
methods can be applied to all phases of the software engineering life-cycle [142, 143] the
process of formal specification fits within the design phase.

The second motivation for this work relates to formal specification and in particular
to existing attempts to increase the usability of Z by incorporating alternate graphical
representations, most notably UML. As an alternative to this approach, the thesis described

the visualisation and navigation of Z specifications via line diagrams representing Formal

157

Concept Lattices.

Within the formal methods community, tool support is seen as another path to increase
the usability and thereby the adoption of formal methods like Z. The continued call for
formal methods tool support represents the third motivation for this work. In response to
this call the thesis described the implementation of a prototype tool developed by the author

for visualising and navigating Z specifications based on FCA.

In support of the claim that the majority of FCA applications in software engineering
have focussed on late-phase and software maintenance tasks, Chapter 2 presented
the results of a comprehensive literature survey. The survey included a number of
different views over the academic literature reporting the application of FCA in software
engineering. These views categorised the survey papers according to: target language;
application size; 1S0O12207 categorisation; author collaboration; and perceived impact
via citation closure. The survey found that the majority of papers report applications to
software maintenance and re-engineering tasks and that there was little work in early-phase

software engineering design using FCA.

While many of the views were specific to this literature a number of generic views were
presented as the basis for an FCA-based methodology for literature reviews in general.
The major contributions of Chapter 2 are: the first broad survey of the FCA in software

engineering literature; and a generic, FCA-based methodology for literature surveys.

In keeping with the first motivation outlined above, Chapters 3 and 4 then described
early-phase software engineering applications of FCA. Chapter 3 presented a case study in
the requirements engineering space comparing two class hierarchies that model aspects of
a mass-transit railway system. The first hierarchy was produced for an existing Object-
Z specification of the system while the second was derived using FCA. An informal
description of the railway system was treated as a set of use-cases and the approach outline

by Duwel was then used to identify class candidates.

While the resulting FCA structure was essentially the same as the existing hierarchy, the
differences highlighted artefacts that had been introduced into the original structure during

formal specification. The approach represents an informal form of object exploration and

158

serves to demonstrates the value of FCA as both a discussion promotion and question-
answering tool. The formal application of object exploration represents an obvious

extension to this work that is discussed further in Section 6.3.3.

Chapter 4 presented an application within the design phase of the software engineering
life-cycle that also addresses the second motivation for this work: using alternate graphical
representations to increase the usability of Z. The chapter briefly discussed existing work to
increase the usability of Z by incorporating graphical notations, principally UML. Context
creation and specification parsing issues were then discussed and the abstréctided a
by FCA were introduced. Conceptual scaling, nested line diagrams, zooming, animation

and folding were all illustrated using thirthdayBookspecification as an example.

The major contribution of Chapter 4 is an FCA-based, alternative visual representation
for visualising specification properties. The representation exploited a number of

abstractions and the approach is amenable to partial automation with tool support.

The third motivation for this work is the continued call for tool support from the formal
methods community. In response to this call, Chapter 5 described the implementation of a
prototype tool for visualising and navigating Z specifications. The tool embodies the ideas

introduced in Chapter 4 and exploits a number of existing technologies.

The chapter discussed a number of approaches to representing Z and also provided
an overview of tool support for FCA. The implementation of a tool based on ZML and
ToscanaJd was then described. SpecTrE — a graphical user interface front end for the
specification transformation, parsing and context creation processes — was also introduced
and a number of specification browser implementation issues were discussed. The major
contribution of Chapter 5 is a prototype implementation of a platform independent, FCA-

based tool for visualising and navigating Z specifications.

The next section of this chapter discusses a related approach to visualise software

structure using FCA that parallels much of the work described in the thesis.

159

6.2 Related Work

The ConceptualAnalysis of Software Structure (CASS) tool described by Cole and
Tilley [40] is an FCA-based tool for analysing the structure of Java classes. While it is not
directly related to formal specification the approach parallels much of the context creation
and visualisation work described in Chapter 4, the tool implementation in Chapter 5, and
some of the class-hierarchy work from Chapter 3.

Rather than only using Java source code as the input for analysis, CASS takes Java class
files and considers the software as an algebraic structure. This allows a user to abstract over
the syntax of the programming language and directly explore properties of interest within
the software structure.

The process of software design and implementation often contains many arbitrary
decisions — from the choice of method or variable names through to the structure of a class
hierarchy. Within so called “agile methods” (andteemeProgramming (XP) in particular)
regular refactoring activities are undertaken to revise the software structure [72, 12]. The
CASS tool seeks to support these kinds of development processes by providing insight into
the structure of the current design. Ideally, CASS would ultimately become a plug-in for
use as an analysis tool within an Integrated Development Environment (IDE) like IBM’s
Eclipse [60] for Java. An overview of the CASS architecture is shown in Figure 6.1.

Source code analysers and profilers are used to extract information about the software
which is stored and queried as a seriesndbrmation graphs These information graphs

consist of triples of the fornfsubject, predicate, objectior example:

"java.util.List" is-a interface,
"java.util.List.isEmpty()" in "java.util.List".

"java.util.List.isEmpty()" is-a method.

These three triples assert that the class.util.List.isEmpty(Js a method within the
interfacejava.util.List A rule based system is then used to extend the Knowledge Base
(KB) with new relationships and artefacts. For example, rules describing transitivity can be
applied so that if a metholis in a clas$B, and clas® is in packageC, then the method

is also in the packagé.

160

intermediate

/= format exploration
execution
dym / \ ‘
anaysis
‘ ‘ \ / “e
static \ /
i A
andlysis l restructuring
source
code C—O—"
rule-based system

Figure 6.1: Architecture of the CASS tool.

Information graphs can also be used to define aspects of the software to be explored.
These graphs can be used to query the knowledge base and generate result sets which are
then visualised using concept lattices which are rendered by ToscanalJ. These hypotheses
or questions may then be investigated either by generating new lattices, perhaps displaying
new aspects of interest within the software structure, or by navigating back to the source

artefacts within the software or its documentation.

Since each concept lattice is generated from a query graph, a natural refinement
ordering allows general views to be elaborated and made more specific. Thus, the user
is able to progress from a general view to a more specific view, or vice versa. In addition,
two or more aspects of the software structure can be combined and visualised using nested

line diagrams.

The use of information graphs for storage, knowledge base enrichment, and querying
makes CASS a very flexible analysis tool. While CASS deals with software rather than
formal specifications, there are many obvious parallels with the work described in the
thesis. The parallels range from the overall aim to facilitate the exploration of the structure
of the software through to the ultimate use of Toscanald for viewing the resulting line

diagrams. The use of a CASS-like architecture for visualising Z specifications could create

161

a more flexible version of the SpecTrE tool and this idea is developed further in the next

section.

6.3 Future Work

The CASS methodology and implementation architecture described above represents a
possible extension to the specification navigation and visualisation work described in the
thesis. However, there are also a number of other possible directions and extensions for

this work.

6.3.1 Conceptual Analysis of Specification Structure

To extract triples from Java class files CASS currently uses IBM’s CFParse class file
analyser library [4]. The adaptation of CASS to create a tool for visualising Z specifications

would require an equivalent mechanism to extract triples from Z specifications.

If we assume ZML input then it may be possible to exploit some of the work coming
out of the CZT initiative [135] or build a simple triple generator based on a custom ZML
or generic XML parser. The existing transformation approach described in Section 5.3.1
could still be used as required to transform source specifications in Oz enhark-up
into ZML.

In terms of the existing tool architecture presented in Chapter 5 a triple extractor
and knowledge base would replace the existing parsing, context and database creation
processes. Toscanad is already used to visualise the lattice diagrams produced by CASS
and the existing browser integration technique could be adapted provided the anchor URLS
are also stored in the knowledge base.

Given that Java is an object-oriented language then this approach should also facilitate
the visualisation of Object-Z. Information graphs could be used to exploit richer
relationships within the specifications and may also facilitate some level of schema

expansion within the knowledge base.

162

6.3.2 Usability Testing

While Chapter 4 discussed how FCA could be used to visualise Z specifications and
Chapter 5 described a tool implementing these ideas no claims were made about the
usability of the tool. To make such claims for the SpecTrE tool described here would
require usability testing and a comparison with existing tools such as the ORA Z Browser
described in Section 5.1.1 a@ADiZ.

One approach to usability testing is to introduce the tool and evaluate its performance as
part of an introductory Z or software engineering course at university. This is the approach
taken by Richards et al. who conducted a survey using 201 second-year Analysis and
Design students to evaluate their vocabulary guidelines and the line diagrams produced
by their RECOCASE tool [158, 159, 157, 156]. Finney [68] and Finney, Fenton and
Fedorec [69] also describe Z comprehensibility studies conducted with both undergraduate
and postgraduate students while Mikak, Vojtek, Hasaralejko and Hanzebowsed
postgraduates and ft#o evaluate their Z Browser [137].

University students are an obvious source of test subjects for academics, however, the
results obtained do not necessarily reflect the experiences of real world users. Evaluations
of this type may continue to perpetuate the view of Z tools as either tools for academics
or research prototypes that fall short of the robust, industrial strength tools that the formal
methods community require [33, 209].

Independent of any usability testing, the approach described here should be applied
to other well known specifications such as the “library problem” [228, 232]. This would
facilitate comparison with other approaches such as the UML-based visualisation work of

Kim and Carrington [117] which uses this example.

6.3.3 Extending the Use-case Approach

In Section 3.50bject exploratiorwas presented as a formal mechanism for both enriching
the context based upon implications and as a way of defining an end point for the iterative
process. Chapter 3, however, did not formally apply object exploration to the mass-transit

example and it was left as ad hocprocess relying on the insight and intuition of the

163

designers to decide when to stop iterating. It would be interesting to formally apply
object exploration to this example and contrast the resulting structure against both the
original Object-Z hierarchy and the informal FCA-hierarchy presented in the chapter. The
scalability issues should not present a significant problem for an example of this size and
the Conlmp, ConExp, or IMPEX tools could be used to support the process.

The possible automation of the initial noun extraction from the use-cases was also
briefly mentioned in Section 3.3. Again, it would be an interesting exercise to compare both
the Object-Z and FCA-hierarchies as presented in the chapter against a hierarchy where the
initial noun extraction was performed automatically using either a controlled vocabulary or

a suitable ontology of terms.

6.3.4 A Return to the Lattice of Specifications

The final extension proposed here seeks to exploit the semantics of Z rather than just the
syntax. This could be achieved by representing some of the richer relationships contained
in Z specifications as formal contexts. In what could be seen as a return to the earliest work
of Mili et al. [138] introduced in Chapter 1 the idea of specification refinement is used to

illustrate three possible approaches.

Specification Refinement

The Z notation can be used to provide specifications fierdint levels of abstraction.

For example, an initial high-level specification may simply be concerned with inputs and

outputs. This can later be refined to include error checking as seen in the development of

the BirthdayBookspecification with the introduction of the “robust” schemas. Using direct

refinement a sequence of specifications can move from an initial abstract representation to

a concrete one that can then be implemented. Each refinement includes more details and

an overview of the technique based on Spiv@ilthdayBookis presented here [184].
TheBirthdayBool schema shown below represents a refinement dBithliedayBook

schema with a concrete state space. The state space is modelled using tworamsss:

which is used for storing the names, atiateswhich is used for storing the birthdates.

The arrays are modelled by functions which map from the set of positive inttigéosthe

164

NAME and DATE data-types. In addition a variable calledmis introduced to represent

the “high water mark” — an index representing how much of the arrays are in use:

__BirthdayBoolk
names N; - NAME
dates: N; — DATE
hwm: N

Yi,j:1..hwmei #j = name§) # nameg)

The predicate part dBirthdayBooR simply checks that there are no repeated names
contained in themamesarray. The relationship between the abstract state space defined by

BirthdayBookand the new concrete state spac8irthdayBoolk can now be described:

__Abs
BirthdayBook
BirthdayBooH

known= {i : 1.. hwme names¢)}
Yi: 1. hwme birthdaynameg)) = dategi)

Having defined a concrete state space and the relationship between the abstract and
concrete state spaces in the schekbg the original operations can now be refined. For
example, théddBirthdayl schema represents an initial array-based implementation of the

AddBirthdayschema:

__AddBirthdayL.
ABirthdayBool
namé& : NAME
date? : DATE

Yi:1l.hwme name& # name§)
hwm = hwm+ 1

names$= namesd {hwm — name}
dates = datesd {hwm — date?}

Given that this refinement now only contains notation with direct counterparts in a

165

programming language an actual implementation ofAddBirthdayoperation could be
provided. While this example demonstrates only a single level of refinement there could
be a number of successive refinements with corresponding proofs to show that each of the
refinement steps are correct.

The existing visualisations described in Section 4.3 could provide significant insight
into the structure of this refined version of the Birthday Book specification. For example,
a line diagram representing schema composition would reveal two parallel structures with
similar schema names based on the inclusion of eitheBittiedayBookor BirthdayBool
state space schemas. THheeet would be similar to the structure revealed in Figure 4.6
where the use of th8uccesschema by the “robust” operations can clearly be seen. The
application of scales containing either the state space schemas goutput names would
also reveal the parallel operation structures in the refined specification.

Provided naming conventions are used consistently within a specification, the patterns
within schema names could also be used to provitlerdint views over the structure of
Z specifications. Example patterns from tBethddayBookspecification could include
the sets of namg&RAddBirthdayRFindBirthday RRemingl, {AddBirthday RAddBirthday
AddBirthdayl} and {AddBirthdayl, FindBirthdayl, Remind}. In the CASS-based
specification tool described in Section 6.3.1 these patterns could be specified as a series
of information graphs.

Two alternative approaches that could be used to represent relationships like schema

refinement within specifications aneulticontextandpower context families

Multicontexts

The use of multicontexts [226] as a mechanism for representing richer relationship
structures in specifications is another possible direction for this work. A formal
multicontext consists of a number of sets and a number of binary relations that are
represented as a network of formal contexts. With respect to the visualisation of Z
specifications, a multicontext could be used to represent refinement wifézeeli
contexts correspond to the specification dfallent levels of refinement. This approach

could potentially form the basis for a tool that can not only provide abstractions but also

166

schema

A schema
via calculus

=

(InitBirthdayBook, BirthdayBook)
(AddBirthday, BirthdayBook)
(FindBirthday, BirthdayBook)
(Remind, BirthdayBook)
(AlreadyKnown, BirthdayBook)
(NotKnown, BirthdayBook)
(RAddBiIrthday, BirthdayBook)
(RAddBirthday, AddBirthday)
(RAddBirthday, Success)
(RAddBirthday, AlreadyKnown)
(RFindBirthday, BirthdayBook)
(RFindBirthday, FindBirthday)
(RFindBirthday, Success)
(RFindBirthday, NotKnown)
(RRemind, BirthdayBook)
(RRemind, Remind)
(RRemind, Success)

X

X[X[X[X

XIX[X[X[X|X]|X[|X|X[|X[X|X[|X[X[X|X]|X]| uses
X

Table 6.1: A formal context representing schema compositioK,in This
context provides an alternate representation of the context in Table 4.6 using
binary relationships between schemas.

the ability to relate views at ierent levels of abstraction [80].

Power Context Families

Power Context Families can also be used to represent the relationships between objects
in formal contexts [46, 90, 89]. Formally, a power context family is a sequé?éce
(Ko, K1, Ky, ...) of formal contextsKy := (G, My, l) with G, € (Go)* for k = 1,2,
The formal concepts oKy with k = 1,2, ... are calledrelation conceptdecause they
represent th&-ary relations on the object s&; by their extents. For example, whil&,
represents the objects themseli€grepresents unary relations between objeé€ihinary
relationships, and so on.

Typically, only K, and K, are used and an example usiikg to represent binary
relationships between schemas in BighdayBookspecification is presented in Table 6.1.
This context presents an alternate representation of the information in Table 4.6 that makes
the composition type explicit.

The same approach could also be used to represent refinement between pairs of

specifications and the refinements described at the start of this section are shown in

167

(BirthdayBook, BirthdayBook1)
(AddBirthday, AddBirthday1)
(FindBirthday, FindBirthday1)
(Remind, Remind1)

X | x| x| X|| refined in

Table 6.2: A formal context representing schema refinemeitin

Table 6.2. Power context families represent another mechanism that could be further

explored to exploit the relationships inherent in Z specifications.

168

Appendix A

BirthdayBook Specification

This appendix presents each of the schema and type declarations from Spivey’s
BirthdayBookspecification [184] in its rendered form along with the corresponding Oz
style BTeX [118] and ZML mark-ups. The ZML shown here is consistent with the original
version reported by Sun et al. [195]. A more recent version of ZML is discussed in

Section 5.1.3 of Chapter 5.

PostScripyPDF:
[NAME DATE]

Oz style BTEX:

\begin{zed}

[NAME, DATE]
\end{zed}

ZML:

<tydef align="left">
[<name>DATE</name>, <name>NAME</name>]
</tydef>

169

PostScripf/PDF:
REPORT ::= ok]| already known| not_known

Oz style BTEX:

\begin{zed}
REPORT \ddef ok \bbar already_known \bbar not_known
\end{zed}

ZML:

<tydef align="left">
<name>REPORT</name> &defs; ok &bbar; already_known &bbar;
not_known

</tydef>

170

PostScripf/PDF:

__BirthdayBook

known: PNAME
birthday: NAME + DATE

known= dombirthday

Oz style BTEX:

\begin{schema}{BirthdayBook}
known: \power NAME \\
birthday: NAME \pfun DATE

\ST
known = \dom birthday

\end{schema}

ZML:

<schemadef layout="simpl" align="left">
<name>BirthdayBook</name>
<decl>
<name>known</name>
<dtype>
&pset; <type>NAME</type>
</dtype>
</decl>
<decl>
<name>birthday</name>
<dtype>
<type>NAME</type> &pfun; <type>DATE</type>
</dtype>
</decl>
<st/>
<predicate>known = &dom; birthday</predicate>
</schemadef>

171

PostScripf/PDF:

__InitBirthdayBook

BirthdayBook

known= &

Oz style BTEX:

\begin{schema}{InitBirthdayBook}
BirthdayBook \\
\ST
known = \emptyset
\end{schema}

ZML:

<schemadef layout="simpl" align="left">
<name>InitBirthdayBook</name>
<incl>
<type>BirthdayBook</type>
</incl>BirthdayBook
<st/>
<predicate>known = ∅</predicate>
</schemadef>

172

PostScripf/PDF:

__AddBirthday

ABirthdayBook
name : NAME
date? : DATE

name’ ¢ known
birthday = birthdayu {name +— date?}

Oz style ATEX:

\begin{schema}{AddBirthday}

\Delta BirthdayBook \\

name? : NAME \\

date? : DATE
\ST

name? \nem known \\

birthday’ = birthday \union \{name? \map date?\}
\end{schema}

ZML:

<schemadef layout="simpl" align="left">
<name>AddBirthday</name>

<type>BirthdayBook</type>

<decl>
<name>name?</name>
<dtype>
<type>NAME</type>
</dtype>
</decl>
<decl>
<name>date?</name>
<dtype>
<type>DATE</type>
</dtype>
</decl>
<st/>
<predicate>name? &nem; known</predicate>
<predicate>birthday’ = birthday &uni; {name? ↦ date?}</predicate>
</schemadef>

173

PostScripf/PDF:

__FindBirthday.

=BirthdayBook
name : NAME
datd : DATE

name € known
date = birthday(name)

Oz style ATEX:

\begin{schema}{FindBirthday}
\Xi BirthdayBook \\
name? : NAME \\
date! : DATE

\ST
name? \mem known \\
date! = birthday(name?)

\end{schema}

ZML:

<schemadef layout="simpl" align="left">

<name>FindBirthday</name>
<xi>

<type>BirthdayBook</type>
</xi>
<decl>

<name>name?</name>

<dtype>

<type>NAME</type>

</dtype>
</decl>
<decl>

<name>date!</name>

<dtype>

<type>DATE</type>

</dtype>
</decl>
<st/>
<predicate>name? &mem; known</predicate>
<predicate>date! = birthday(name?)</predicate>

</schemadef>

174

PostScripf/PDF:

__Remind

=BirthdayBook
today? : DATE
cardd : PNAME

cardd = {n: known| birthday(n) = today?}

Oz style BTEX:

\begin{schema}{Remind}

\Xi BirthdayBook \\

today? : DATE \\

cards! : \power NAME
\ST

cards! = \{ n : known \cbar birthday(n) = today? \}
\end{schema}

ZML:

<schemadef layout="simpl" align="left">
<name>Remind</name>
<xi>
<type>BirthdayBook</type>
</xXi>
<decl>
<name>today?</name>
<dtype>
<type>DATE</type>
</dtype>
</decl>
<decl>
<name>cards!</name>
<dtype>
&pset; <type>NAME</type>
</dtype>
</decl>
<st/>
<predicate>cards! = {n : known &bbar; birthday(n) = today?}</predicate>
</schemadef>

175

PostScripf/PDF:

___Success
result : REPORT
result = ok
Oz style BTEX:

\begin{schema}{Success}
result! : REPORT
\ST
result! = ok
\end{schema}

ZML:

<schemadef layout="simpl" align="left">
<name>Success</name>
<decl>
<name>result!</name>
<dtype>
<type>REPORT</type>
</dtype>
</decl>
<st/>
<predicate>result! = ok<predicate>
</schemadef>

176

PostScripf/PDF:

__AlreadyKnown
=BirthdayBook
name : NAME
result : REPORT

name € known
result = already known

Oz style ATEX:

\begin{schema}{AlreadyKnown}
\Xi BirthdayBook \\
name? : NAME \\
result! : REPORT

\ST
name? \mem known \\
result! = already_known
\end{schema}
ZML:

<schemadef layout="simpl" align="left">
<name>AlreadyKnown</name>
<xi>
<type>BirthdayBook</type>
</xi>
<decl>
<name>name?</name>
<dtype>
<type>NAME</type>
</dtype>
</decl>
<decl>
<name>result!</name>
<dtype>
<type>REPORT</type>
</dtype>
</decl>
<st/>
<predicate>name? &mem; known</predicate>
<predicate>result! = already_known</predicate>
</schemadef>

177

PostScripf/PDF:

__NotKnown

=BirthdayBook
name : NAME
result : REPORT

name ¢ known
result = not. known

Oz style ATEX:

\begin{schema} {NotKnown}
\Xi BirthdayBook \\
name? : NAME \\
result! : REPORT

\ST
name? \nem known \\
result! = not_known
\end{schema}
ZML:

<schemadef layout="simpl" align="left">
<name>NotKnown</name>
<xi>
<type>BirthdayBook</type>
</xi>
<decl>
<name>name?</name>
<dtype>
<type>NAME</type>
</dtype>
</decl>
<decl>
<name>result!</name>
<dtype>
<type>REPORT</type>
</dtype>
</decl>
<st/>
<predicate>name? &nem; known</predicate>
<predicate>result! = not_known</predicate>
</schemadef>

178

PostScripf/PDF:
RAddBirthday= (AddBirthdayA SuccessVv AlreadyKnown

Oz style BTEX:

\begin{zed}
RAddBirthday \sdef (AddBirthday \land Success)
\lor AlreadyKnown

\end{zed}

ZML:

<schemadef layout="calc" align="left">
<name>RAddBirthday</name>
<predcalc op="or">
<predcalc op="and">
<type>AddBirthday</type>
<type>Success</type>
</predcalc>
<type>AlreadyKnown</type>
</predcalc>&lor; AlreadyKnown
</schemadef>

179

PostScripf/PDF:

RFindBirthday= (FindBirthday A Successv NotKnown

Oz style BTEX:

\begin{zed}
RFindBirthday \sdef (FindBirthday \land Success) \lor NotKnown
\end{zed}

ZML:

<schemadef layout="calc" align="left">
<name>RFindBirthday</name>
<predcalc op="or">
<predcalc op="and">
<type>FindBirthday</type>
<type>Success</type>
</predcalc>
<type>NotKnown</type>
</predcalc>
</schemadef>

180

PostScripf/PDF:
RRemind= RemindA Success

Oz style BTEX:

\begin{zed}
RRemind \sdef Remind \land Success
\end{zed}

ZML:

<schemadef layout="calc" align="left">
<name>RRemind</name>
<predcalc op="and">
<type>Remind</type>
<type>Success</type>
</predcalc>
</schemadef>

181

IATEX and ZML documents require opening and closing mark-up which are included here
for completeness.
PostScripyPDF:

Not applicable.

Oz style BTEX:

\documentclass[a4paper] {oz2e}
\begin{document}

\end{document}

ZML:

<?xml version="1.0" encoding="UTF-8"?7>

<?xml-stylesheet type="text/xsl"
href="http://nt-appn.comp.nus.edu.sg/fm/zml/objectzed.xsl"?>

<!DOCTYPE unicode SYSTEM
"http://nt-appn.comp.nus.edu.sg/fm/zml/unicode.dtd">

<objectZnotation xmlns="x-schema:objectZschema.xml"
xmlns:HTML="http://www.w3.0org/Profiles/XHTML-transitional">

</objectZnotation>

182

TheRemoveBirthdagchema shown here and thiedifyBirthdayschema on the following
page are extensions to the original BrithdayBook specification. They are discussed in
Section 4.3.3 of the thesis.

PostScripyPDF:

__RemoveBirthday
ABirthdayBook
name& : NAME

name € known
birthday = namé < birthday

Oz style BTEX:

\begin{schema}{RemoveBirthday}
\Delta BirthdayBook \\
name? : NAME \\

\ST

name? \mem known \\

birthday’ = {name?} \dsub birthday
\end{schema}
ZML:

<schemadef layout="simpl" align="left">
<name>RemoveBirthday</name>

<type>BirthdayBook</type>

<decl>
<name>name?</name>
<dtype>
<type>NAME</type>
</dtype>
</decl>
<st/>
<predicate>name? &mem; known</predicate>
<predicate>birthday’ = {name?} &dsub; birthday</predicate>
</schemadef>

183

PostScripf/PDF:
ModifyBirthday= RemoveBirthdayAddBirthday

Oz style BTEX:

\begin{zed}
ModifyBirthday \sdef RemoveBirthday \zcmp AddBirthday
\end{zed}

ZML:

<schemadef layout="calc" align="left">
<name>Modi fyBirthday</name>
<predcalc op="com">
<type>RemoveBirthday</type>
<type>AddBirthday</type>
</predcalc>
</schemadef>

184

Bibliography

[1] F. Achermann and O. Nierstrasz, “Moose: a language-independent reengineering
environment,” May 2003. [Online]. Available: htgpwww.iam.unibe.cfiscg
ResearciMooség

[2] S. Agerholm and P. Larsen, “A lightweight approach to formal methods,” in
Applied Formal Methods — FM-Trends 9&er. LNAI 1641, D. Hutter, W. Stephan,

P. Traverso, and M. Ullman, Eds. Berlin: Springer-Verlag, October 1998, pp. 168—
183.

[3] A.Alencar and J. Goguen, “OOZE: An object-oriented Z environmenguropean
Conference on Object Oriented Programmisgr. LNCS 512, P. America, Ed. New
York: Springer-Verlag, 1991, pp. 180-199.

[4] “alphaWorks: CFParse,” alphaWorks, September 2000. [Online]. Available:
httpy//www.alphaworks.ibm.coytechcfparse

[5] G. Ammons, D. Mandelin, R. Bodik, and J. Larus, “Debugging temporal
specifications with concept analysis,” iRroceedings of the Conference on
Programming Language Design and Implementation PLDI'OBCM, June 2003.

[6] U. Andelfinger, Diskursive Anforderungsanalyse. Ein Beitrag
zum Reduktionsproblem bei Systementwicklungen in der Informafitankfurt:
Peter Lang, 1997.

[7] G. Antoniol, R. Fiutem, G. Lutteri, P. Tonella, and S. Zanfei, “Program
understanding and maintenance with the CANTO environmentPriceedings
International Conference on Software Maintenan®etober 1997, pp. 72-81.

[8] G. Arévalo, “Understanding behavioral dependencies in class hierarchies using

185

http://www.iam.unibe.ch/~scg/Research/Moose/
http://www.iam.unibe.ch/~scg/Research/Moose/
http://www.alphaworks.ibm.com/tech/cfparse/

concept analysis,” ilProceedings of LMO 2003 (Langages et Modéles a Object)
Paris (France): Hermes, February 2003.

[9] G. Arévalo, S. Ducass, and O. Nierstrasz, “Understanding classes using x-ray
views,” in MASPEGHI 2003, MAnaging SPEcializati@eneralization Hlerarchies
(MASPEGHI) Workshop at ASE 2Q08ontreal, Canada, 2003, preliminary version.

[10] “Graphviz,” AT&T Labs-Research, October 2000. [Online]. Available:
httpy//www.research.att.cofsw/toolggraphviz

[11] T. Ball, “The concept of dynamic analysis,” iRroceedings of ACM SIGSOFT
Symposium on the Foundations of Software EnginegBegtember 1999, pp. 216—
234.

[12] K. Beck, Extreme Programming Explained: Embrace Changéddison-Wesley,
2000.

[13] P. Becker, “Multi-dimensional representations of conceptual hierarchies,” in
Conceptual Structures—Extracting and Representing Semantics, Contributions to
ICCS 20012001, pp. 145-158.

[14] P. Becker, “Tockit — a framework for conceptual knowledge processing,” June 2003.
[Online]. Available: httpy/tockit.sourceforge.ngt

[15] P. Becker, *“Toscanald: Welcome,” February 2003. [Online]. Available:
httpy//toscanaj.sourceforge.net

[16] P. Becker and J. H. Correia, “The Toscanad suite for implementing conceptual
information systems,” inProceedings of the First International Conference on
Formal Concept Analysis — ICFCA'Q&. Stumme, Ed. Springer-Verlag, 2004, to
appear.

[17] P. Becker, “Potential data formats for FCA,” March 2004. [Online]. Available:
httpy/kvo.itee.uqg.edu.dtwiki/bin/view/Tockit/PotentialDataFormats

[18] W. Biggs, “package gnu.regexp — regular expressions for Java,” June 2001, version
1.1.3. [Online]. Available: httg/www.cacas.orfiavagnyregexp

[19] G. Birkhoff, Lattice Theory2nd ed. New York: American Mathematical Society,
1948.

186

http://www.research.att.com/sw/tools/graphviz/
http://tockit.sourceforge.net/
http://toscanaj.sourceforge.net/
http://kvo.itee.uq.edu.au/twiki/bin/view/Tockit/PotentialDataFormats
http://www.cacas.org/java/gnu/regexp/

[20] B. Boehm, “A spiral model of software development and enhancemeniitorial:
Software Engineering Project ManagemeRt Thayer, Ed. Washington: IEEE
Computer Society, 1987, pp. 128-142.

[21] D. Bojic and D. Velasevic, “Reverse engineering of use case realizations in
UML,” in Symposium on Applied Computing — SAC2008CM, 2000. [Online].
Available: http//www.acm.orgconferencesagsacO@ProceegFinalPapers

[22] G. Booch, I. Jacobson, and J. Rumbaube unified modeling language user guide
ser. Addison-Wesley object technology. Reading, Massachusetts: Addison-Wesley,
1999.

[23] E. Borger, “High level system design using abstract state machinesippiied
Formal Methods — FM-Trends 98ser. LNAI 1641, D. Hutter, W. Stephan,

P. Traverso, and M. Ullman, Eds. Berlin: Springer-Verlag, October 1998, pp.
1-43.

[24] K. Bottger, R. Schwitter, D. Richards, O. Aguilera, and D. MpllReconciling use
cases via controlled language and graphical modeldRAP’2001 — Proceedings
of the 14th International Conference on Applications of Prologapan: University
of Tokyo, October 2001, pp. 20-22.

[25] J. Bowen, “comp.specification.z frequently asked questions (FAQ),” May 2003.
[Online]. Available: http//www.fags.orgfaqgz-fagf

[26] J. Bowen, “The world wide web virtual library: The Z notation,” June 2003.
[Online]. Available: httpy/www.zuser.orgg/

[27] J. Bowen and D. Chippington, “Z on the web using JavaZlii\’'98: The Z Formal
Specification Notation, 11th International Conference of Z Usses LNCS 1493,

J. Bowen, A. Fett, and M. Hinchey, Eds. Berlin: Springer-Verlag, 1998, pp. 66—80.

[28] J. Bowen and M. Hinchey, “Seven more myths of formal methd@#EE Software
vol. 12, no. 4, pp. 34-41, July 1995.

[29] J. Bowen and M. Hinchey, Ed#\pplications of Formal MethodsLondon: Prentice
Hall, 1996.

[30] P. Buch, “HPGL — Hewlett Packard Graphics Language,” February 2003. [Online].

187

http://www.acm.org/conferences/sac/sac00/Proceed/FinalPapers
http://www.faqs.org/faqs/z-faq/
http://www.zuser.org/z/

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Available: http//www.piclist.comtechreflanguagghpgl.htm

F. Buchli, “Detecting software patterns using formal concept analysis,”
Institut fur Informatik und angewandte Mathematik, Univeisit Bern,
Switzerland, Technical Report IAM-03-010, September 2003. [Online]. Available:
httpy//www.buchli.orgfrank/work/mastefdiplomaBuchliFrank.pdf

P. Burmeister, “Formal concept analysis with Conlmp: Introduction to the
basic features,” TU-Darmstadt, Darmstadt, Germany, Tech. Rep., 1996. [Online].
Available: http//www.mathematik.tu-darmstadt,feurmeistet

R. Butler and C. Holloway, “Impediments to industrial use of formal methd&d&£E
Computer pp. 2526, April 1996.

G. Canfora, A. Cimitile, A. De Lucia, and G. Di Lucca, “A case study of
applying an eclectic approach to identify objects in codeYMorkshop on Program
Comprehension IEEE, 1999, pp. 136-143.

C. Carpineto and G. Romano, “Order-theoretical rankidgyirnal of the American
Society for Information Sciences (JASK)I. 7, no. 51, pp. 587-601, 2000.

P. Ciancarini, C. Mascolo, and F. Vitali, “Visualizing Z notation in HTML
documents,” iInZUM’98: The Z Formal Specification Notation, 11th International
Conference of Z Userser. LNCS 1493, J. Bowen, A. Fett, and M. Hinchey, Eds.
Berlin: Springer-Verlag, 1998, pp. 81-95.

E. Clarke and J. Wing, “Formal methods: State of the art and future directions,”
ACM Computing Surveysol. 28, no. 4, pp. 626—643, December 1996.

R. Cole and P. Eklund, “Scalability in formal concept analysiSgmputational
Intelligence, vol. 15, no. 1, pp. 11-27, 1999.

R. Cole, P. Eklund, and G. Stumme, “CEM — a program for visualization and
discovery in email,” in4th European conference on principles and practice of
knowledge discovery in databases, PKDD 206@r. LNAI 1910, D. Zighed,

J. Komorowski, and J. Zytkow, Eds. Berlin: Springer-Verlag, September 2000,
pp. 367-374.

R. Cole and T. Tilley, “Conceptual analysis of software structurePlioceedings

188

http://www.piclist.com/techref/language/hpgl.htm
http://www.buchli.org/frank/work/master/diplomaBuchliFrank.pdf
http://www.mathematik.tu-darmstadt.de/~burmeister/

of Fifteenth International Conference on Software Engineering and Knowledge
Engineering, SEKE’'03 USA: Knowledge Systems Institute, June 2003, pp. 726—
733.

[41] R. Cole, “The management and visualisation of document collections using formal
concept analysis,” Ph.D. dissertation, fGtihh University, School of Information
and Communication Technology, Parklands Drive, Southport QLD 4215, December
2000.

[42] R. Cole and P. Eklund, “Browsing semi-structured web texts using formal concept
analysis,” inProceedings 9th International Conference on Conceptual Strugtures
ser. LNAI 2120. Berlin: Springer-Verlag, 2001, pp. 319-332.

[43] R. Corderoy, “tréf.org — the text processor for typesetters,” 2003. [Online].
Available: http//www.troff.org

[44] B. Davey and H. Priestlylntroduction to Lattices and Order2nd ed. Press
Syndicate of the University of Cambridge, 2002.

[45] U. Dekel, “Applications of concept lattices to code inspection and review,” in
The Israeli Workshop on Programming Languages and Development Environments
Israel: IBM Haifa Research Lab, July 2002, ch. 6. [Online]. Available: Httpyvw.
haifa.il.ibm.confinfo/ple/papergnspecsummary.pdf

[46] H.Delugach, M. Keeler, D. Lukose, L. Searle, and J. Sowa, Edsm¢eptual Graphs
and Formal Concept Analysiser. LNCS 1257. Berlin: Springer-Verlag, 1997.

[47] A. Diller, Z: An Introduction to Formal Method2nd ed. Chichester: John Wiley
and Sons, 1994.

[48] J. Dong, “Z family on the web with their UML photos,” Nov 2001. [Online].
Available: http//nt-appn.comp.nus.edu/gg/zml/

[49] J. Dong, “XML schema definition for the Z family formal specification languages
(Z/Object-ZTCOZ),” 2002. [Online]. Available: httgint-appn.comp.nus.edu/sg
fm/zml/zml.xsd

[50] J. Dong, “XML schema definition of Z specification language,” Aug 2002. [Online].
Available: httpz/nt-appn.comp.nus.edu/§m/zml/z-stangzml-xsd.htm

189

http://www.troff.org
http://www.haifa.il.ibm.com/info/ple/papers/inspec_summary.pdf
http://www.haifa.il.ibm.com/info/ple/papers/inspec_summary.pdf
http://nt-appn.comp.nus.edu.sg/fm/zml/
http://nt-appn.comp.nus.edu.sg/fm/zml/zml.xsd
http://nt-appn.comp.nus.edu.sg/fm/zml/zml.xsd
http://nt-appn.comp.nus.edu.sg/fm/zml/z-stand/zml-xsd.htm

[51] J. Dong, Y. Li, J. Sun, J. Sun, and H. Wang, “XML-based static type checking
and dynamic visualization for TCOZ,” idth International Conference on Formal
Engineering Methods Springer-Verlag, October 2002, pp. 311-322.

[52] R. Duke and G. RoseFormal Object-Oriented Specification Using Object-Z
MacMillan Press, 2000.

[53] V. Duquenne, “Latticial structures in data analysigtieoretical Computer Science
vol. 217, no. 2, pp. 407-436, 1999.

[54] V. Duquenne, “GLAD: A program for general lattice analysis and design,” in
Proceedings of the First International Conference on Formal Concept Analysis —
ICFCA'03, G. Stumme, Ed. Springer-Verlag, 2004, to appear.

[55] V. Duquenne, C. Chabert, A. Cherfouh, J.-M. Delabar, A.-L. Doyen, and
D. Pickering, “Structuration of phenotypggenotypes through galois lattices and
implications,” inCLKDD’01: Concept Lattices-based Theory, Methods and Tools
for Knowledge Discovery in Databasds. Nguifo, M. Liquiere, and V. Duquenne,
Eds., vol. 42. CEUR, 2001, pp. 21-32.

[56] S. Duwel, “Enhancing system analysis by means of formal concept analysis,”
in Conference on Advanced Information Systems Engineering 6th Doctoral
Consortium Heidelberg, Germany, June 1999.

[57] S. Diwel, “BASE — ein begfisbasiertes analyseverfahreir fdie software-
entwicklung,” Ph.D. dissertation, Philipps-Univegit Marburg, 2000. [Online].
Available: http//www.ub.uni-marburg.deigibib/edisgwelcome.html

[58] S. Duwel and W. Hesse, “Identifying candidate objects during system analysis,” in
Proceedings of CAISE'@&IP 8.1 Third International Workshop on Evaluation of
Modelling Methods in System Analysis and Design (EMMSADRi®R, 1998.

[59] S. Duwel and W. Hesse, “Bridging the gap between use case analysis and class
structure design by formal concept analysis Madelle und Modellierungssprachen
in Informatik und Wirtschaftsinformatik. Proceedings “Modellierung 2000”

J. Ebert and U. Frank, Eds. KoblenZlbach-Verlag, 2000, pp. 27-40.

[60] “Eclipse.org main page,” Eclipse Consortium, June 2003. [Online]. Available:

190

http://www.ub.uni-marburg.de/digibib/ediss/welcome.html

httpy//www.eclipse.org

[61] J. Eijndhoven, “Graphplace,” December 1995. [Online]. Available: /ftp:dcs.
warwick.ac.ukpeopléMartyn.Amogpackagegraphplacgraphplace.tar.gz

[62] T. Eisenbarth, R. Koschke, and D. Simon, “Aiding program comprehension by static
and dynamic feature analysis,” Proceedings of ICSM2001 — The International
Conference on Software MaintenancelEEE Computer Society Press, 2001, pp.
602-611.

[63] T. Eisenbarth, R. Koschke, and D. Simon, “Feature-driven program understanding
using concept analysis of execution traces,” 9l International Workshop on
Program Comprehension IEEE, 2001, pp. 300-309.

[64] T. Eisenbarth, R. Koschke, and D. Simon, “Locating features in source dédes’
Transactions on Software Engineerjngl. 29, no. 3, pp. 195-209, March 2003.

[65] R. Elmasriand S. B. NavathEundamentals of Database SysteBrsl ed. Addison-
Wesley, 2000.

[66] “Mail-Sleuth,” Email Analysis Pty Ltd, June 2003. [Online]. Available:
httpy//www.mail-sleuth.com

[67] A. Evans and A. Clark, “Foundations of the unified modeling language,” in
BCS-FACS Northern Formal Methods Workshaer. Electronic Workshops in
Computing, D. Duke and A. Evans, Eds. Springer Verlag, 1998.

[68] K. Finney, “Mathematical notation in formal specification: Todfidult for the
masses?1EEE Transactions on Software Engineeringl. 22, no. 2, pp. 158-159,
February 1996.

[69] K. Finney, N. Fenton, and A. Fedorec,ffEBcts of structure on the comprehensibility
of formal specifications,JEE Proceedings — Software Engineeringl. 146, no. 4,
pp. 193-202, August 1999.

[70] B. Fischer, “Specification-based browsing of software component libraries,”
in Automated Software Engineeringl998, pp. 74-83. [Online]. Available:
httpy/citeseer.nj.nec.coffischer99specificationbased.html

[71] “FME: Tools database,” Formal Methods Europe. [Online]. Available:

191

http://www.eclipse.org
ftp://ftp.dcs.warwick.ac.uk/people/Martyn.Amos/packages/graphplace/graphplace.tar.gz
ftp://ftp.dcs.warwick.ac.uk/people/Martyn.Amos/packages/graphplace/graphplace.tar.gz
http://www.mail-sleuth.com
http://citeseer.nj.nec.com/fischer99specificationbased.html

httpy//www.fmeurope.or@latabasgtols.html

[72] M. Fowler, Refactoring, Improving the Design of Existing CodéAddison Wesley,
1999.

[73] R. Freese, “Lattice drawing,” August 2003. [Online]. Available: http:
//www.math.hawaii.edfralptyLatDraw/

[74] P. Funk, A. Lewien, and G. Snelting, “Algorithms for concept lattice decomposition
and their applications,” TU Braunschweig, Tech. Rep. 95-09, December 1995.
[Online]. Available: http//citeseer.nj.nec.cofhl7356.html

[75] B. Ganter, “Attribute exploration with background knowledgelheoretical
Computer Sciengevol. 217, no. 2, pp. 215-233, 1999. [Online]. Available:
citeseer.nj.nec.cofganter96attribute.html

[76] B. Ganter and R. Wille, “Conceptual scaling,”Applications of combinatorics and
graph theory to the biological and social sciencés Roberts, Ed. New York:
Springer-Verlag, 1989, pp. 139-167.

[77] B. Ganter and R. Wille, “Applied lattice theory: Formal concept analysis,” 1997.
[Online]. Available: http//citeseer.nj.nec.cofganter97applied.html

[78] B. Ganter and R. WilleFormal Concept Analysis: Mathematical Foundations
Berlin: Springer-Verlag, 1999.

[79] D. Germain and D. Cowan, “Experiments with the Z interchange format and SGML,”
in Proceedings of ZUM'95 — 9th International Conference of Z UskrBowen and
M. Hinchey, Eds. Springer-Verlag, 1995, pp. 224-233.

[80] S. German, “Research goals for formal method&’M Computing Surveysol. 28,
no. 4es, December 1996.

[81] C. L. Giles, K. Bollacker, and S. Lawrence, “CiteSeer: An automatic citation
indexing system,” inDigital Libraries 98 — The Third ACM Conference
on Digital Libraries I. Witten, R. Akscyn, and F. M. Shipman IIlI, Eds.
Pittsburgh, PA: ACM Press, June 23-26 1998, pp. 89-98. [Online]. Available:
httpy/citeseer.nj.nec.cofgiles98citeseer.html

[82] R. Godin, H. Mili, G. W. Mineau, R. Missaoui, A. Arfi, and T.-T. Chau, “Design

192

http://www.fmeurope.org/databases/tools.html
http://www.math.hawaii.edu/~ralph/LatDraw/
http://www.math.hawaii.edu/~ralph/LatDraw/
http://citeseer.nj.nec.com/117356.html
citeseer.nj.nec.com/ganter96attribute.html
http://citeseer.nj.nec.com/ganter97applied.html
http://citeseer.nj.nec.com/giles98citeseer.html

of class hierarchies based on concept (galois) latticEsgory and Application of
Object Systems (TAPQSpI. 4, no. 2, pp. 117-134, 1998.

[83] R. Godin, G. Mineau, and R. Missaoui, “Incremental structuring of knowledge
bases,” inProceedings of the International Knowledge Retrieval, Use, and Storage
for Efficiency Symposium (KRUSE’'9Ser. LNAI, vol. 9, no. 2. Springer-Verlag,
1995, pp. 179-198.

[84] R. Godin, G. Mineau, R. Missaoui, M. St-Germain, and N. Faraj, “Applying
concept formation methods to software reusetérnational Journal of Knowledge
Engineering and Software Engineeringl. 5, no. 1, pp. 119-142, 1995.

[85] R. Godin and R. Missaoui, “An incremental concept formation approach for learning
from databases,Theoretical Computer Science, Special Issue on Formal Methods
in Databases and Software Engineeringl. 133, pp. 387-419, 1994.

[86] R. Godin, R. Missaoui, and A. April, “Experimental comparison of navigation
in a galois lattice with conventional information retrieval methodstérnational
journal of Man-Machine Studiesol. 38, no. 5, pp. 747-767, May 1993.

[87] R. Godin and H. Mili, “Building and maintaining analysis-level class hierarchies
using galois lattices,” irProceedings of the OOPSLA'93 Conference on Object-
oriented Programming Systems, Languages and Applicatt®@3, pp. 394-410.
[Online]. Available: http//citeseer.nj.nec.cofgodin93building.html

[88] W. Grieskamp, “The ZETA system,” October 1998. [Online]. Available:
httpy//uebb.cs.tu-berlin.deetd

[89] B. Groh, “A contextual-logic framework based on relational power context families,”
Ph.D. dissertation, Gffith University, School of Information and Communication
Technology, March 2002.

[90] B. Groh and P. Eklund, “Algorithms for creating relational power context families
from conceptual graphs,” ifConceptual Structures: Standards and Practices,
ICCS’99 ser. LNAI 1640, W. Tepfenhart and W. Cyre, Eds. Berlin: Springer-
Verlag, 1999, pp. 389—-400.

[91] A. Hall, “Seven myths of formal methodslEEE Softwarepp. 11-19, September

193

http://citeseer.nj.nec.com/godin93building.html
http://uebb.cs.tu-berlin.de/zeta/

1990.

[92] I. Hayes, Ed.Specification Case StudiesPrentice Hall, 1987.

[93] J. Hereth, “DOS programs of the Darmstadt research group on formal concept
analysis,” June 1999. [Online]. Available: hitgsww.mathematik.tu-darmstadt/de
aggaglSoftwargDOS-Programm@\Velcomeen.html

[94] W. Hesse and T. Tilleyi:CA — The state of the arser. LNCS. Springer-Verlag,
2004, ch. Formal Concept Analysis used for software analysis and modelling, to
appear.

[95] C. Holloway, “NASA LaRC fornal methods humor,” May 2002. [Online]. Available:
http;//shemesh.larc.nasa.gtm/fm-humor.htmi

[96] M. Huchard and H. Leblanc, “From Java classes to Java interfaces through
galois lattices,” inActes de ORDAL'99: 3rd International Conference on Orders,
Algorithms and ApplicationdVontpellier, 1999, pp. 211-216.

[97] M. Huchard, C. Roume, and P. Valtchev, “When concepts point at other concepts:
the case of UML diagram reconstruction,” Advances in Formal Concept Analysis
for Knowledge Discovery in Databases, FCAKDD 20202, pp. 32—43.

[98] “Visual modeling with rational rose home,” IBM, October 1999. [Online].
Available: httpf/www.rational.coryproductgrosé

[99] IEEE, IEEE Std 610.12-1990 — IEEE Standard Glossary of Software Engineering
Terminology New York: IEEE, September 1990.

[100] IEEE,IEEEEIA 12207.0-1996 — Standard for Information Technology — Software
life cycle processes New York: IEEE, March 1998.

[101] “Information processing — text andiixe systems — standard generalized markup
language (sgml),” ISO 8879:1986, 1986.

[102] “Information technology — universal multiple-octet coded character set (UCS) —
part 1: Architecture and basic multilingual plane,” |88 10646-1, 2000.

[103] “Information technology — universal multiple-octet coded character set (UCS) —
part 2: Supplementary planes,” IBBC 10646-2, 2001.

[104] “Information technology — Z formal specification notation — syntax, type system

194

http://www.mathematik.tu-darmstadt.de/ags/ag1/Software/DOS-Programme/Welcome_en.html
http://www.mathematik.tu-darmstadt.de/ags/ag1/Software/DOS-Programme/Welcome_en.html
http://shemesh.larc.nasa.gov/fm/fm-humor.html
http://www.rational.com/products/rose/

and semantics,” ISTEC 13568:2002, January 2002.

[105] D. Jackson, “A comparison of object modelling notations: Alloy,
UML and Z,” August 1999, unpublished manuscript. [Online]. Available:
httpy//sdg.lcs.mit.edidnj/pubgalloy-comparison.pdf

[106] D. Jackson, I. Schechter, and I. Shlyakhter, “Alcoa: the Alloy constraint analyzer,”
in Proceedings of the International Conference on Software Enginedringgrick,
Ireland, June 2000, pp. 730-733.

[107] D. Jackson and M. Vaziri, “Some shortcomings of OCL, the object
constraint language of UML,” December 1999, response to Object
Management Group’s Request for Information on UML 2.0. [Online]. Available:
httpy//sdg.lcs.mit.edfdnj/publications.html

[108] J. Jacky, “Z2HTML translator,” March 2001. [Online]. Available:
httpy/staf.washington.edijon/z/z2htmjz2html.html

[109] M. Janssen, “Online Java lattice building application,” August 2003. [Online].
Available: httpy/juffer.xs4all.nlcgi-biryjalabaJaLaBA.pl

[110] X. Jia, “Z type checker,” October 2002. [Online]. Available: http:
//venus.cs.depaul.effm/ztc.htm

[111] X. Jia, “ZANS tool,” October 2002. [Online]. Available: http:
//venus.cs.depaul.edm/zans.htm

[112] W. Johnston, “A type checker for Object-Z,” Software Verification Research
Centre, School of Information Technology, The University of Queensland, Brisbane
4072. Australia, Technical report 96-24, September 1996. [Online]. Available:
httpy/svrc.it.ug.edu.gBibliographysvrc-tr.html?96-24

[113] Y. Kalfoglou, “Applications for FCA in AKT,” July 2003. [Online]. Available:
httpy//www.aktors.orgiechnologiegca/fca_techProfile.htm

[114] S.-K. Kim and D. Carrington, “Formalizing the UML class diagram using Object-
Z.” in Proceedings of the Second IEEE conference on UML: UML¥9. LNCS
1723. Springer-Verlag, 1999, pp. 83-98.

[115] S.-K. Kim and D. Carrington, “An integrated framework with UML and Object-Z

195

http://sdg.lcs.mit.edu/~dnj/pubs/alloy-comparison.pdf
http://sdg.lcs.mit.edu/~dnj/publications.html
http://staff.washington.edu/~jon/z/z2html/z2html.html
http://juffer.xs4all.nl/cgi-bin/jalaba/JaLaBA.pl
http://venus.cs.depaul.edu/fm/ztc.htm
http://venus.cs.depaul.edu/fm/ztc.htm
http://venus.cs.depaul.edu/fm/zans.htm
http://venus.cs.depaul.edu/fm/zans.htm
http://svrc.it.uq.edu.au/Bibliography/svrc-tr.html?96-24
http://www.aktors.org/technologies/fca/fca_techProfile.htm

for developing a precise and understandable specification: The light control case
study,” in Seventh Asia-Pacific Software Engineering Conferendeos Alamitos,
California: IEEE Computer Society, December 2000, pp. 240-248.

[116] S.-K. Kim and D. Carrington, “A formal metamodeling approach to a transformation
between UML state machine and Object-Z,"Gonference on Formal Engineering
Methods (ICFEM2002)ser. LNCS 2495, C. George and H. Miao, Eds. Berlin:
Springer-Verlag, 2002, pp. 548-560.

[117] S.-K. Kim and D. Carrington, “Visualization of formal specifications,” $ixth
Asia-Pacific Software Engineering ConferencelLos Alamitos, California: IEEE
Computer Society, December 1999, pp. 38-45.

[118] P. King, Printing Z and Object-ZAIX documentsSoftware Verification Research
Centre, University of Queensland, Australia, May 1990.

[119] J. Knight, C. DeJdong, M. Gibble, and L. Nakano, “Why are
formal methods not used more widely?” ifFourth NASA Formal
Methods Workshgp Hampton, VA, September 1997. [Online]. Available:
httpy//www.cs.virginia.edfijck/publicationgfm.97.pdf

[120] D. Knuth, “Literate programming,The Computer JournaVol. 27, pp. 97-111, May
1984.

[121] W. Kollewe, M. Skorsky, F. Vogt, and R. Wille, “TOSCANA — ein werkzeug zur
begriflichen analyse und erkundung von daten Begrifliche Wissensverarbeitung
— Grundfragen und AufgabemR. Wille and M. Zickwoft, Eds. = Mannheim-
Leipzig-Wien-Zuerich: B.-l. Wissenschaftsverlag, 1994, pp. 267-288.

[122] M. Krone and G. Snelting, “On the inference of configuration structures from source
code,” in Proceedings of the International Conference on Software Engineering
(ICSE 1994)1994, pp. 49-57.

[123] T. Kuipers and L. Moonen, “Types and concept analysis for legacy systems,”
Centrum voor Wiskunde en Informatica, Tech. Rep. SEN-R0017, July 2000.

[124] L. Lamport, IATeX: A Document Preparation Systerdnd ed. Addison-Wesley,
1994.

196

http://www.cs.virginia.edu/~jck/publications/lfm.97.pdf

[125] K. Lano, “Z++: an object-oriented extension to Z,” i@ Users Workshop:
Proceedings of the 4th Annual Z User Meetirsger. Workshops in Computing,

J. Nicholls, Ed. Berlin: Springer-Verlag, 1991, pp. 151-172.

[126] H. Leblanc, C. Dony, M. Huchard, and T. Libourel, “An environment for building
and maintaining class hierarchies,” ECOOP’99: Workshop “Object-Oriented
Architectural Evolution’; ser. LNCS 1743, A. Moreira and S. Demeyer, Eds.
Springer-Verlag, 1999, pp. 77-78.

[127] “The ProofPower web pages,” Lemma 1 Ltd, May 2003. [Online]. Available:
httpy//www.lemma-one.copfProofPowetindex

[128] C. Lindig, “Concept-based component retrieval,”Working Notes of the IJCAI-

95 Workshop: Formal Approaches to the Reuse of Plans, Proofs, and Pragrams
J. Kohler, F., Giunchiglia, C. Green, and C. Walther, Eds., August 1995, pp. 21-25.

[129] C. Lindig, “TKConcept,” January 1996. [Online]. Available: http:
//sensei.ieec.uned/esanualegkconceptwelcome.html

[130] C. Lindig, “A concept analysis framework,” 1998. [Online]. Available:
httpy//www.st.cs.uni-sb.ddindig/papergkconcepticcs.pdf

[131] C. Lindig, “Concepts,” September 2003. [Online]. Available: http:
//www.st.cs.uni-sh.ddindig/srgconcepts.html

[132] C. Lindig and G. Snelting, “Assessing modular structure of legacy code based on
mathematical concept analysis,”ftoceedings of the International Conference on
Software Engineering (ICSE 9MBoston, 1997, pp. 349-359.

[133] B. Mahony and J. Dong, “Timed communicating Object-lEEE Transactions on
Software Engineeringrol. 26, no. 2, pp. 150-177, February 2000.

[134] B. Mahony and J. Dong, “Deep semantic links of TCSP and Object-Z: TCOZ
approach,Formal Aspects of Computingol. 13, pp. 142-160, 2002.

[135] A. Martin, “Community Z tools initiative,” July 2003. [Online]. Available:
http;//web.comlab.ox.ac.y&uclwork/andrew.martifCZT/

[136] H. Miao, L. Liu, and L. Li, “Formalizing UML models with Object-Z,” in
Conference on Formal Engineering Methods (ICFEM2002¢r. LNCS 2495,

197

http://www.lemma-one.com/ProofPower/index/
http://sensei.ieec.uned.es/manuales/tkconcept/welcome.html
http://sensei.ieec.uned.es/manuales/tkconcept/welcome.html
http://www.st.cs.uni-sb.de/~lindig/papers/tkconcept/iccs.pdf
http://www.st.cs.uni-sb.de/~lindig/src/concepts.html
http://www.st.cs.uni-sb.de/~lindig/src/concepts.html
http://web.comlab.ox.ac.uk/oucl/work/andrew.martin/CZT/

C. George and H. Miao, Eds. Berlin: Springer-Verlag, 2002, pp. 523-534.

[137] L. MikuSiak, V. Vojtek, J. Hasaralejko, and J. HanzeélptZ browser — a tool for
visualization of Z specifications,” iProceedings of ZUM’95 — 9th International
Conference of Z Users. Bowen and M. Hinchey, Eds. Springer-Verlag, 1995, pp.
510-523.

[138] A. Mili, N. Boudrigua, and F. Elloumi, “On the lattice of specifications: Applications
to a specification methodologyFormal Aspects of Computingol. 4, no. 6, pp.
544-571, December 1992.

[139] S. Miller, T. Vitale, and M. Guy, “The Miranda programming language,”
December 1997. [Online]. Available: httpnedialab.freaknet.ofgmartirylibri/
MirandaDescription.htm|

[140] “Electric XML,” The Mind Electric, June 2003. [Online]. Available:
http;//www.themindelectric.copexml/

[141] “remote control of unix mozilla,” The Mozilla Organization, January 2003.
[Online]. Available: httpy/www.mozilla.orgunix/remote.html

[142] NASA, Formal Methods Specification and Analysis Guidebook for the Verification
of Software and Computer SystemsWashington, DC: National Aeronautics and
Space Administration, May 1997, vol. 2, NASA-GB-001-97.

[143] NASA, Formal Methods Specification and Verification Guidebook for the Software
and Computer Systems Washington, DC: National Aeronautics and Space
Administration, December 1998, vol. 1, NAGA-98-208193.

[144] “NaviCon,” NaviCon AG, May 2003. [Online]. Available: htijawww.navicon.de

[145] “Researchindex terms of service,” NEC Research Institute, 2001. [Online].
Available: http//citeseer.nj.nec.cofterms.html

[146] “CiteSeer: The NEC research institute scientific literature digital library,” NEC
Research Institute, 2002. [Online]. Available: hitpiteseer.nj.nec.com

[147] “Z Dbrowser,” ORA Canada, August 1999. [Online]. Available: http:
//www.ora.on.c&z-evegzbrowser.html

[148] “Z browser plug-in,” ORA Canada, August 1999. [Online]. Available:

198

http://medialab.freaknet.org/~martin/libri/Miranda/Description.html
http://medialab.freaknet.org/~martin/libri/Miranda/Description.html
http://www.themindelectric.com/exml/
http://www.mozilla.org/unix/remote.html
http://www.navicon.de
http://citeseer.nj.nec.com/terms.html
http://citeseer.nj.nec.com
http://www.ora.on.ca/z-eves/zbrowser.html
http://www.ora.on.ca/z-eves/zbrowser.html

httpy//www.ora.on.cg&-evegzbplugin.html

[149] “ORA canada: ZEVES,” ORA Canada, July 2001. [Online]. Available:
http;y/www.ora.on.cgz-evegwelcome.html

[150] “Welcome to the programming research group,” Oxford University Computing
Laboratory, November 2002. [Online]. Available: httpieb.comlab.ox.ac.y&ucl
aboutpry/

[151] “The Perl directory at perl.org,” The Perl Foundation, 2003. [Online]. Available:
httpy//www.perl.org

[152] J. Peterson and O. Chitil, “The Haskell home page,” July 2003. [Online]. Available:
http;/www.haskell.org

[153] A. Pluschke, “Programs for formal concept analysis,” April 2002. [Online].
Available: httpy/www.mathematik.tu-darmstadt@plueschkgcatoolgprograms.
html

[154] R. Pressmarfoftware Engineering: a practitioner’s approa@rd ed. Singapore:
McGraw-Hill, 1992.

[155] D. Richards and K. Boettger, “Assisting decision making in requirements
reconciliation,” in Seventh International Conference on Computer Supported
Cooperative Work in Design (CSCWD 200R)o de Jainero, September 2002.

[156] D. Richards and K. Boettger, “Representing requirements in natural language as
concept lattices,” ir22nd Annual International Conference of the British Computer
Society’s Specialist Group on Atrtificial Intelligence (SGES), (ES20D&nbridge,
December 2002.

[157] D. Richards, K. Boettger, and O. Aguilera, “A controlled language to assist
conversion of use case descriptions into concept lattice?raceedings of 15th
Australian Joint Conference on Artificial Intelligenc&02.

[158] D. Richards, K. Boettger, and A. Fure, “RECOCASE-tool: A CASE tool for
RECOnciling requirements viewpoints,” iRroceedings of the 7th Australian
Workshop on Requirements Engineering, AWRE’2Q002.

[159] D. Richards, K. Boettger, and A. Fure, “Using RECOCASE to compare use cases

199

http://www.ora.on.ca/z-eves/zbplugin.html
http://www.ora.on.ca/z-eves/welcome.html
http://web.comlab.ox.ac.uk/oucl/about/prg/
http://web.comlab.ox.ac.uk/oucl/about/prg/
http://www.perl.org
http://www.haskell.org
http://www.mathematik.tu-darmstadt.de/~plueschke/fcatools/programs.html
http://www.mathematik.tu-darmstadt.de/~plueschke/fcatools/programs.html

from multiple viewpoints,” inProceedings of the 13th Australasian Conference on
Information Systems ACIS 2Q(2elbourne, December 2002.

[160] P. Robinson, “Qu-Prolog home page,” November 2003. [Online]. Available:
httpy//www.itee.uqg.edu.alpjr/HomePaggQuPrologHome.html

[161] T. Rock and R. Wille, “Ein TOSCANA—erkundungsystem zur literatursuche,” in
Begriffliche Wissensverabeitung: Merthoden und Anwendun@erStumme and
R. Wille, Eds. Berlin-Heidelberg: Springer-Verlag, 2000, pp. 239-253.

[162] P. Rook, “Controlling software projects3oftware Engineering Journalol. 1,
no. 1, pp. 7-16, January 1996.

[163] W. W. Royce, “Managing the development of large software systemguiarial:
Software Engineering Project ManagemeRt Thayer, Ed. Washington: IEEE
Computer Society, 1987, pp. 118-127, originally published in Proceedings of
WESCON’97.

[164] A. Ryman, “Formal methods and literate programmingPmceedings of the Third
IBM Software Engineering IT,LJune 1993.

[165] M. Saaltink, “The ZEVES system,” inZUM’97: The Z Formal Specification
Notation ser. LNCS 1212. Springer-Verlag, 1997, pp. 72-85.

[166] H. Sahraoui, W. Melo, H. Lounis, and F. Dumont, “Applying concept formation
methods to object identification in procedural code Pmoceedings of International
Conference on Automated Software Engineering (ASE '9#EE, November 1997,
pp. 210-218.

[167] I. Schmitt and S. Conrad, “Restructuring object-oriented database schemata by
concept analysis,” iffundamentals of Information Systems (Post-Proceedings 7th
International Workshop on Foundations of Models and Languages for Data and
Objects FOMLaDO’98)T. Polle, T. Ripke, and K.-D. Schewe, Eds. Boston: Kluwer
Academic Publishers, 1999, pp. 177-185.

[168] S. Schupp, M. Krishnamoorthy, M. Zalewski, and J. Kilbride, “The “right” level
of abstraction — assessing reusable software with formal concept analysis,” in

Foundations and Applications of Conceptual Structures — Contributions to ICCS

200

http://www.itee.uq.edu.au/~pjr/HomePages/QuPrologHome.html

2002 G. Angelova, D. Corbett, and U. Priss, Eds. Bulgarian Academy of Sciences,
2002, pp. 74-91.

[169] R. Schwitter, “The ExtrAns-project,” February 2000. [Online]. Available:
httpy//www.ifi.unizh.chcl/extrangoverview.html

[170] R. Schwitter, D. Mol&, and M. Hess, “ExtrAns — answer extraction from technical
documents by minimal logical forms and selective highlighting,” September 1999.

[171] M. Siff and T. Reps, “ldentifying modules via concept analysis,” in
Proceedings of the International Conference on Software Maintenance
IEEE Computer Society Press, 1997, pp. 170-179. [Online]. Available:
httpy/citeseer.nj.nec.cofsiff97identifying.html

[172] D. Sleator, “Link grammar,” August 2000. [Online]. Available: http:
//bobo.link.cs.cmu.edlink

[173] D. Sleator and D. Temperley, “Parsing english with a link grammar,Timrd
International Workshop on Parsing Technologi#991.

[174] G. Smith,The Object-Z Specification Languager. Advances in Formal Methods.
Kluwer Academic Publishers, 1999.

[175] G. Snelting, “Reengineering of configurations based on mathematical concept
analysis,” ACM Transactions on Software Engineering and Methodqlogy. 5,
no. 2, pp. 146-189, April 1996.

[176] G. Snelting, “Concept analysis — a new framework for program understanding,”
in SIGPLANSIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTEMontreal, Canada, June 1998, pp. 1-10.

[177] G. Snelting, “Software reengineering based on concept latticeBfaceedings 4th
European Conference on Software Maintenance and ReengineeeligE, 2000,
pp. 3—-12. [Online]. Available: httpciteseer.nj.nec.cofsneltingO0software.html

[178] G. Snelting and F. Tip, “Reengineering class hierarchies using concept analysis,”
IBM T.J. Watson Research Center, IBM T.J. Watson Research Center, P.O. Box
704, Yorktown Heights, NY 10598, USA, Tech. Rep. RC 21164(94592)24APR97,
1997. [Online]. Available: httg/citeseer.nj.nec.cofsnelting98reengineering.html

201

http://www.ifi.unizh.ch/cl/extrans/overview.html
http://citeseer.nj.nec.com/siff97identifying.html
http://bobo.link.cs.cmu.edu/link
http://bobo.link.cs.cmu.edu/link
http://citeseer.nj.nec.com/snelting00software.html
http://citeseer.nj.nec.com/snelting98reengineering.html

[179] G. Snelting and F. Tip, “Reengineering class hierarchies using concept analysis,”
in Proceedings of ACMSIGSOFT Symposium on the Foundations of Software
Engineering November 1998, pp. 99-110.

[180] G. Snelting and F. Tip, “Understanding class hierarchies using concept analysis,”
ACM Transactions on Programming Languages and Systpms540-582, May
2000.

[181] N. Spangenberg, “The conceptual structure of countertransference associations:
an examination of diagnostic associations through an analysis of their semantic
features,” inPsychoanalytic research by means of formal concept analgsis
Special des Sigmund-Freud-Instituts. UiNster: Springer-Verlag, 1999.

[182] N. Spangenberg and K. E. Whl“Comparison between biplot analysis and formal
concept analysis of repertory grids,”@lassification, data analysis, and knowledge
organization Berlin-Heidelberg: Springer, 1991, pp. 104-112.

[183] J. Spivey, “An introduction to Z and formal specificationSpftware Engineering
Journal vol. 4, no. 1, pp. 40-50, January 1989.

[184] J. Spivey,The Z notation : a reference manualPrentice-Hall International, 1989.

[185] J. SpiveyA guide to thezed style option Oxford University Computing Laboratory,
December 1990. [Online]. Available: httfwww.zuser.orgpulyzguide.ps.Z

[186] J. Spivey,The fuzz Manual 2nd ed., The Spivey Partnership, Oxford, England,
December 1992.

[187] M. Spivey, “The Fuzz type-checker,” September 1999. [Online]. Available:
http;//web.comlab.ox.ac.y&uclsoftwargfuzz.html

[188] S. Stepney, “Z and HTML,” April 2003. [Online]. Available: http:
//www-users.cs.york.ac.ilsusayabgzhtml.htm

[189] M. Streckenbach and G. Snelting, “Understanding class hierarchies with KABA,”
in Workshop on Object-Oriented Reengineering — WOORT@@ilouse, France,
September 1999. [Online]. Available: httyww.infosum.fmi.uni-passau. g/
papergvoor-99

[190] G. Stumme, “Attribute exploration with background implications and exceptions,”

202

http://www.zuser.org/pub/zguide.ps.Z
http://web.comlab.ox.ac.uk/oucl/software/fuzz.html
http://www-users.cs.york.ac.uk/~susan/abs/zhtml.htm
http://www-users.cs.york.ac.uk/~susan/abs/zhtml.htm
http://www.infosum.fmi.uni-passau.de/st/papers/woor-99/
http://www.infosum.fmi.uni-passau.de/st/papers/woor-99/

in Data Analysis and Information Systems: Statistical and Conceptual approaches,
Proceedings of GfKI'95. Studies in Classification, Data Analysis, and Knowledge
Organization 7 H. Bock and W. Polasek, Eds. Heidelberg: Springer, 1996, pp.
457-4609.

[191] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal,
“Computing iceberg concept lattices with TITANIC,'Data Knowledge
Engineering vol. 42, no. 2, pp. 189-222, 2002. [Online]. Available:
httpy/citeseer.ist.psu.egarticle'stumme02computing.html

[192] J. Sun, “Discussion of XML schen@aTD from jing sun (singapore),” January
2002. [Online]. Available: httgiweb.comlab.ox.ac.y&uc)work/andrew.martih
CZT/jing-sun/

[193] J. Sun, “Tools and verification techniques for integrated formal methods,” Ph.D.
dissertation, Department of Computer Science, National University of Singapore,
2003, draft.

[194] J. Sun, J. S. Dong, J. Liu, and H. Wang, “A formal object
approach to the design of ZML,Annals of Software Engineering: An
International Journal vol. 13, pp. 329-356, 2002. [Online]. Available:
httpy//www.comp.nus.edu.g@longjgpapergase02sdiw.pdf

[195] J. Sun, J. Dong, J. Lui, and H. Wang, “Object-Z web environment and projections to
UML,” in WWW10 — 10th International World Wide Web Conferendéew York:
ACM, 2001, pp. 725-734.

[196] J. Sun, J. Dong, J. Lui, and H. Wang, “An XIYXSL approach to visualize and
animate TCOZ,” irBth Asia-Pacific Software Engineering Conference (APSEC’01)
IEEE Press, 2001, pp. 453—-460.

[197] T. Taran and O. Tkachev, “Applications of formal concept analysis in humane
studies,” inUsing Conceptual Structures: Contributions to ICCS 20B3Ganter
and A. de Moor, Eds. Shaker Verlag, 2003, pp. 271-274.

[198] “Tcl developer site,” Tcl Developer Xchange, May 2003. [Online]. Available:
http;/www.tcl.tk/

203

http://citeseer.ist.psu.edu/article/stumme02computing.html
http://web.comlab.ox.ac.uk/oucl/work/andrew.martin/CZT/jing-sun/
http://web.comlab.ox.ac.uk/oucl/work/andrew.martin/CZT/jing-sun/
http://www.comp.nus.edu.sg/~dongjs/papers/ase02sdlw.pdf
http://www.tcl.tk/

[199] T. Tilley, “Towards an FCA based tool for visualising formal specifications,”
in Using Conceptual Structures: Contributions to ICCS 2083 Ganter and
A. de Moor, Eds. Shaker Verlag, 2003, pp. 227-240.

[200] T. Tilley, R. Cole, P. Becker, and P. Eklund, “A survey of formal concept analysis
support for software engineering activities,®noceedings of the First International
Conference on Formal Concept Analysis — ICFCA'G3 Stumme, Ed. Springer-
Verlag, 2004, to appear.

[201] T. Tilley, W. Hesse, and R. Duke, “A software modelling exercise using FCA,"
in Using Conceptual Structures: Contributions to ICCS 2083 Ganter and
A. de Moor, Eds. Shaker Verlag, 2003, pp. 213-226.

[202] T. Tilley, “Tool support for FCA,” inConcept Lattices: Proceedings of the Second
International Conference on Formal Concept Analysis, ICFCA 20et. LNAI
2961, P. Eklund, Ed. Berlin: Springer-Verlag, 2004, pp. 104-111.

[203] P. Tonella, “Concept analysis for module restructurindEE Transactions on
Software Engineeringrol. 27, no. 4, pp. 351-363, April 2001.

[204] P. Tonella and G. Antoniol, “Object-oriented design pattern inference,” in
Proceedings of CSM 1992999, pp. 230—-240.

[205] I. Toyn, “CADiZ: Home page — release 4.1,” June 2002. [Online]. Available:
httpy//www-users.cs.york.ac.yikarycadiz

[206] I. Toyn and J. McDermid, “CADiZ: An architecture for Z tools and its
implementation,’Software — Practice and Experiena®l. 25, no. 3, pp. 305-330,
March 1995.

[207] I. Toyn and S. Stepney, “Charactersmark-up= Z lexis,” in ZB2002: Second
International Conference of B and Z Useser. LNCS 2272, D. Bert, J. P. Bowen,
M. C. Henson, and K. Robinson, Eds. Springer-Verlag, January 2002, pp. 100-119.

[208] K. Turner, Ed.,Using Formal Description Techniques (An Introduction to Estelle,
LOTOS and SDL)ser. Wiley series in Communication and Distributed Systems.
Chichester: John Wiley and Sons Ltd., 1993.

[209] “Protocol specification in Estelle at univ. of delaware,” University of

204

http://www-users.cs.york.ac.uk/~ian/cadiz/

Delaware Protocol Engineering Laboratory, April 2000. [Online]. Available:
http;//www.eecis.udel.ediamefPEL/estellgindex.html

[210] M. Utting, “CZT project,” July 2003. [Online]. Available: httficzt.sourceforge.nét

[211] M. Utting, I. Toyn, J. Sun, A. Martin, J. Dong, N. Daley, and D. Currie, “ZML: XML
support for standard Z,” iBrd International Conference of Z and B Users (ZB’03)
ser. LNCS 2651. Berlin: Springer-Verlag, June 2003, pp. 437-456.

[212] P. Valtchev, “Galicia home page,” February 2003. [Online]. Available:
httpy//www.iro.umontreal.c@valtcheygalicig

[213] P. Valtchev, D. Gosser, C. Roume, and M. Hacene, “Galicia: an open platform for
lattices,” inUsing Conceptual Structures: Contributions to ICCS 20B3Ganter
and A. de Moor, Eds. Shaker Verlag, 2003, pp. 241-254.

[214] P. Valtchev, R. Missaoui, and R. Godin, “A framework for incremental generation of
frequent closed itemsets,” Proceedings of the Workshop on Discrete Mathematics
and Data Mining (DM>DM2002) Arlington, VA, 2002.

[215] P. Valtchev, R. Missaoui, R. Godin, and M. Meridji, “Generating frequent itemsets
incrementally: two novel approaches based on galois lattice thedwyfnal of
Experimental and Theoretical Artificial Intelligence (JETAI) : Special Issue on
Concept Lattice-based theory, methods and tools for Knowledge Discovery in
Databasesvol. 14, no. 2, pp. 115-142, 2002.

[216] A. van Deursen and T. Kuipers, “ldentifying objects using cluster and concept
analysis,” in Proceedings of the 21st International Conference on Software
Engineering, ICSE-99 ACM, 1999, pp. 246-255.

[217] R. Vienneau, “A review of formal methods,” Roftware Engineering. Dorfman
and R. Thayer, Eds. Computer Society Press, 1996.

[218] F. Vogt and R. Wille, “TOSCANA — a graphical tool for analyzing and exploring
data,” in Proceedings of the DIMACS International Workshop on Graph Drawing
(GD'94), ser. LNCS 894, R. Tamassia and |. Tollis, Eds. Berlin-Heidelberg:
Springer-Verlag, 1995, pp. 226—-233.

[219] “Extensible markup language (XML),” W3C — World Wide Web Consortium, June

205

http://www.eecis.udel.edu/~amer/PEL/estelle/index.html
http://czt.sourceforge.net/
http://www.iro.umontreal.ca/~valtchev/galicia/

2003. [Online]. Available: httgimwww.w3.orgXML

[220] “The extensible stylesheet language family (XSL),” W3C — World Wide Web
Consortium, June 2003. [Online]. Available: hfpwww.w3.org Style/’XSL

[221] “W3C math home,” W3C — World Wide Web Consortium, April 2003. [Online].
Available: httpf/www.w3.orgMathy

[222] “W3C MathML implementations page,” W3C — World Wide Web Consortium,
March 2003. [Online]. Available: httgwww.w3.orgMathyimplementations.html

[223] “W3C XML schema,” W3C — World Wide Web Consortium, September 2003.
[Online]. Available: httpy/www.w3.orgXML /Schema

[224] E. Wafula and P. Swatman, “FOOM: A diagrammatic illustration of inter-object
communication in Object-Z specifications,” ifihe 1995 Asia-Pacific Software
Engineering Conference (APSEC’'95)IEEE Computer Society Press, 1995.

[225] R. Wille, “Restructuring lattice theory: An approach based on hierarchies of
concepts,’Ordered Setspp. 445-470, 1982.

[226] R. Wille, “Conceptual structures of multicontexts,” @onceptual Structures:
Knowledge Representation as Interlingua. Proceedings of the 4th International
Conference on Conceptual Structuresr. LNAI 1115. Springer-Verlag, 1996, pp.
23-39. [Online]. Available: httg/citeseer.nj.nec.cof86991.html

[227] R. Wille, “Conceptual landscapes of knowledge: A pragmatic paradigm for
knowledge processing,” iRroceedings of International Symposium on Knowledge
Retrieval, Use, and Storage fogfieiency, KRUSE’9,/Vancouver, August 1997, pp.
2-13.

[228] J. Wing, “A study of 12 specifications of the library probledEEE Softwarevol. 5,
no. 4, pp. 66—76, July 1988.

[229] J. Wing, “Specifier's introduction to formal methoddEEE Computer vol. 23,
no. 9, pp. 8-24, September 1990.

[230] J. Woodcock and J. Daviedsing Z: Specification, Refinement and Prod®rentice
Hall, 1996.

[231] J. Wordsworth, “An XML DTD for Z,” October 1999.

206

http://www.w3.org/XML
http://www.w3.org/Style/XSL
http://www.w3.org/Math/
http://www.w3.org/Math/implementations.html
http://www.w3.org/XML/Schema
http://citeseer.nj.nec.com/36991.html

[232] J. Wordsworth,Software Development with Z: A Practical Approach to Formal
Methods in Software Engineeringer. International Computer Science. Addison-
Wesley, 1992.

[233] A. Yahia, L. Lakhal, J. P. Bordat, and R. Cicchetti, “An algorithmic method
for building inheritance graphs in object database designProceedings of the
15th International Conference on Conceptual Modeling, ER$#. LNCS 1157,

B. Thalheim, Ed. Cottbus, Germany: Springer, October 1996, pp. 422—-437.

[234] S. Yevtushenko, “Sourceforge.net. Project info — concept explorer,” May 2003,

version 1.1. [Online]. Available: httsourceforge.ngbrojectgconexp

207

http://sourceforge.net/projects/conexp

	Abstract
	Acknowledgments
	Preface
	Introduction
	Background
	Motivation
	Thesis Structure
	Formal Methods and FCA
	Formal Concept Analysis
	Formal Context
	Formal Concept Lattice
	Line Diagram
	Conceptual Scaling
	Nested Line Diagrams
	Order Embedding
	Attribute Exploration

	Formal Specification in Z
	Schema Composition
	Object-Z

	A Survey of FCA Support for Software Engineering
	Understanding Software Engineering
	ISO12207 Software Engineering Standard
	Software Maintenance

	FCA in Software Engineering
	ISO12207 Categorisation
	Target Application Language
	Reported Application Size

	Support for Late-phase Activities
	Analysis of Software Configurations
	Modularisation of Legacy Code
	Transforming Class Hierarchies

	Support for Early-phase Activities
	Requirements Analysis
	Use-case Analysis
	Software Component Retrieval

	Summary of Results
	FCA as a Literature Survey Tool
	Author Collaboration
	Citation Patterns
	Computing the Citation Closure
	The ResearchIndex Digital Library (CiteSeer)

	Comparing Paper Impact via Citation Count
	Conclusion

	Class Hierarchy Identification from Use-case Descriptions
	Motivation
	From an informal description to a first concept lattice
	Iterating the FCA steps
	Comparing the two approaches
	Object Exploration
	Conclusion

	Formal Specification Navigation and Visualisation
	Visualising Z Specifications
	From a Specification to a Formal Context
	Abstraction in FCA
	Scaling
	Visualising Schema Composition
	Nested Line Diagrams
	Schema Composition Revisited

	Zooming
	Animation and Folding

	Conclusion

	Specification Browser Implementation
	Representing Z
	LATEX Z Styles
	Z Browser

	Z in ASCII
	ZSL

	Z on the Web
	Applet-based Approaches
	MathML
	ZML
	Other XML-based Z Representations

	FCA Tools
	GLAD
	ConImp
	Anaconda and Toscana
	ToscanaJ
	Cernato
	ConExp
	IMPEX
	GaLicia
	Generic Tools Summary
	Application Specific Tools
	Monolithic Approaches
	Modular Approaches

	Specification Transformation Engine (SpecTrE)
	Specification Transformation
	Database and Context Creation
	Browser Integration
	GUI Front-end

	Conclusion

	Conclusion
	Thesis Summary
	Related Work
	Future Work
	Conceptual Analysis of Specification Structure
	Usability Testing
	Extending the Use-case Approach
	A Return to the Lattice of Specifications
	Specification Refinement
	Multicontexts
	Power Context Families

	BirthdayBook Specification

