
GUI framework communication via the WWW

Thomas Tilley, School of Information Technology, Griffith University, Australia 4215,
T.Tilley@gu.edu.au
Peter Eklund, School of Information Technology, Griffith University, Australia 4215,
P.Eklund@gu.edu.au

Abstract

This paper discusses experimental results and design issues arising from a project to
implement a distributed, platform-independent GUI framework. Four different approaches
for distributed-object communication are presented. Each approach is evaluated according
to its execution time and engineering cost.

Keywords: World Wide Web, GUI, client/server, Java, CORBA

1 Introduction

Two main options exist for the implementation of an Internet front-end for applications with Graphical
User Interfaces (GUIs). The first is to "hard-code" a remote interface specifically for the application and
distribute it to client computers. The problem with this approach is the inflexibility of the resulting
interface. If the application is modified then the GUI software needs to be changed and re-deployed to
clients. World Wide Web based deployment options include: FTP or HTTP down-loading of the client
software; using "push" technology to update clients; and distribution of the front-end as a Java applet.

An alternative approach that minimises the need for client re-distribution is to provide a GUI framework
[1, 2]. Using the framework an application’s interface can be built dynamically directly from the
application server. If the appropriate set of GUI components are implemented on the client the remote
GUI can provide the same "look and feel" as the program running locally on the application server. An
additional advantage is that changes to the back-end (server-side) application do not necessitate
modification to the front-end (client-side). Any re-arrangement of the application’s user interface (UI) is
reflected dynamically by the remote client.

2 Project Overview

The aim of the project was to provide a platform independent GUI capable of providing remote access to
an application via the Internet while retaining the native "look and feel" of the application. This was
achieved using a two-tier client/server approach that has parallels with the X-Windows System and "thin
client" Network PC paradigms. The server-side target application was a Spatial Database Management
System (SDBMS) providing real-time 3D data visualisation. The SDBMS was implemented in C++ on
the Silicon Graphics IRIX platform.

Java was chosen to implement the front-end client because of the project’s platform-independence
requirement. While Java is only as portable as the platforms that support it, this now represents a large
number of operating-systems. The incorporation of the Java Virtual Machine (VM) into Web browsers
also provides a convenient distribution mechanism for Java applets. It is important to note, however, that
a Web browser serves only to deploy the client. As Nielsen notes it is unlikely that the Web will become
a single, universal interface for all applications and services delivered by the Internet [3]. The aim of this
work is not to massage an application’s UI so that it can be accessed via a browser, rather it attempts to
provide transparent remote access to an application independent of the client platform.

The Swing GUI toolkit from the Java Foundation Classes [4] was used to implement the GUI
components, known as widgets, on the client. Swing was chosen for two reasons. Firstly, because Swing
is implemented in Java it meets the platform-independence requirement. Secondly, it mirrors the
functionality of the Qt GUI toolkit [5] used by the target application including support for the "Motif"
look and feel.

3 Distributed-object Communication

"Distributed computing" typically refers to the transparent distribution of processes or data over an
unspecified number of machines. In this paper the term "distributed" indicates the simple separation of
an application and its user interface via the Internet. GUI building instructions from a server-side
application are trapped and transported via the Internet to a remote client. The remote client then
assembles the interface to produce a remote UI for the application. Events such as the user clicking on a
button are returned to the server-side for processing.

Providing front-ends for legacy systems presents a number of engineering challenges. One of these
challenges is how to best integrate components written in different languages. In this project the need for
a Java client to interact with a server application written in C++ limited the available communication
options. Four implementation techniques for inter-language communication were explored. The first was
to communicate directly between Java and C++ using BSD style sockets.

Sockets provide a fast, low-level, file-like means of communication between processes or machines.
This character based approach means that complex objects must be ‘‘flattened’’ or serialised before they
can be sent ‘‘over the wire’’. The serialisation efficiency affects the length of the resulting object
representation which is typically a string. The longer the string the longer it takes to transmit. There is
also an associated engineering cost in terms of the design and implementation of a suitably complex and
robust communication protocol [6]. Communication between different languages must provide
compatibility and consistency between base types such as integers and strings.

One obvious way to solve the type compatibility problem is to use Java sockets for communication on
both the client and the server. This was the second technique explored. While this technique increases
the complexity of the server and appears to merely shift the location of the problem it actually facilitates
a solution. Using the Java Native Interface (JNI) [7] Java programs can interact with C and C++ via
shared libraries. JNI provides type mappings and methods for inter-operation between the languages.
This resolves the compatibility problem at least for simple types. Java sockets can provide the
client-server communication while JNI handles Java/C++ interaction within the server.

The third technique used CORBA - the Common Object Request Broker Architecture [8, 9]. As with the

first socket option it facilitates "direct" communication between the Java client and the C++ server.
CORBA is a high-level distributed object technology that largely abstracts over protocol and
serialisation issues. It provides base types for inter-language operation as well as the ability to handle
exceptions. The incorporation of CORBA object request brokers (ORBs) into Web browsers CORBA is
an increasingly flexible deployment option.

The final implementation again required Java on both client and server. The JNI handled Java/C++
interaction while the client/server communication relied upon Java’s Remote Method Invocation (RMI)
[10]. RMI is a high-level, CORBA-like technology providing communication between Java VMs
running on different hosts. While RMI does not provide the same range of services as CORBA it does
provide simple and transparent integration into Java-code.

4 Protocol Evaluation

An experiment was devised to evaluate the suitability of the four techniques described above. The
experiment is designed to simulate the transmission of "callbacks" between a remote GUI client and a
server application. There are two main aims. The first is to measure the comparative performance in
terms of string echo time for each of the communication techniques. The second aim is to gain insight
into the engineering costs associated with implementing each method.

GUIs are assembled using sub-components called widgets. Widgets represent items such as buttons,
sliders and menu items. In response to user actions widgets generate "callbacks". For example a user
clicking on a button generates a callback which then invokes the appropriate response in the application
- perhaps to open a dialog box. A moderately complex GUI may incorporate hundreds of callbacks [11].
In a distributed GUI these callbacks are forwarded to the server.

Callbacks from some widgets can also contain parameters reflecting their current state. A slider’s
callback may for example pass an integer representing the current position of the slider. To simulate a
typical single-parameter callback a randomly generated string was passed from a client to a server. This
string was then echoed back to the client and the elapsed time was recorded. Simple implementations of
the four techniques described in Section 3 were written and the experiment was conducted.

A program generated test files that contained 10, 20 or 40 strings. The strings were composed of random
characters with lengths between 1 and 256 characters. Although the use of longer test strings would
reduce the effect of marshalling on the results, shorter test strings more accurately reflected widget
parameters.

Disk input/output latency was limited by pre-loading the test-data into a convenient data-structure before
transmission. The JNI server implementations were also required to convert the test string from Java to
C++ and then back to Java before echoing it to the client. Connection establishment times were ignored
and network loading effects were reduced by running both client and server on the same host in
loop-back mode. The server-side application was only designed to support a single-user at a time so
testing multiple concurrent connections was not required.

Strings
C++ Sockets Java Sockets CORBA RMI

10

20

40

8.1
12.5
27.3

17.3
35.7
59.9

32.5
55.9
113.4

32.8
61.6
117.4

Table 1: Average echo times (mS) for 10, 20 and 40

strings.

Table 1 presents the average echo times in milliseconds over 10 runs for files containing 10, 20 and 40
strings. The data appears to indicate an approximately linear increase in the average echo times. Some
initial experiments with 10, 100 and 1000 strings also reinforce this observation.

The average echo times over 10 runs for each of the files containing 10 strings are represented in Figure
1. As expected the socket-based implementations provided the fastest times. The Java-based socket
implementation is slower due to VM and JNI conversion overheads. CORBA was approximately 4 times
slower than the C++ sockets while RMI provided the slowest times overall. These results may be
influenced by the choice of a particular VM or CORBA implementation.

Figure 1: Average echo times of the four implementatins.

While these results provide a simple performance comparison the other significant issue is the
engineering cost of each technique. Although sockets provide the fastest implementations the
engineering cost to develop a robust protocol for a modestly complex GUI under strict time constraints
is too large. The high-level facilities provided by RMI and CORBA come at the expense of speed but
they reduce some of the costs associated with implementing distributed systems [1].

Although the RMI method provided the slowest callback times it is simpler to use than CORBA and
integrates transparently into Java code. RMI also automatically provides distributed garbage collection.
This needs to be handled manually under CORBA and is an important consideration when dealing with
C++. On the basis of its comparatively low engineering cost RMI was used to provide communication
within the distributed GUI framework.

Remote visualisation typically requires significant volumes of data to be transmitted. While the GUI
framework itself did not implement remote data visualisation the experimental results suggest that using
RMI for visualisation communication would be inappropriate. Speed is essential and a less complex

protocol is required [12]. With a simpler protocol requirement and the need for speed a sockets based
implementation would be more suitable.

5 Integration

Transparently integrating a remote Java client with a C++ server presents a number of challenges. The
use of RMI and JNI resolves most communication and inter-language problems but two main issues
remain. Firstly, how can the distributed GUI framework be incorporated into the server without
modifying the server-side application. Secondly, how can the front-end Java widgets be bound to their
C++ counterparts so that assembly and callbacks operate correctly.

Figure 2: The server-side SDBMS architecture.

The architecture of the server-side application is presented in Figure 2. This architecture facilitates an
elegant solution to the first problem. The SDBMS has a client/server architecture based around a central
message passer and a persistent repository for spatial data. Components of the system are implemented
as servers, each running as separate processes. These servers provided facilities such as GUI building,
visualisation, triangulation, and data locking. The server labelled "....." in the diagram represents the
extensibility of this system. New facilities can be incorporated by implementing them as a server and
then registering them with the central message passer.

The SDBMS’s UI is built by forwarding component requests to the GUI builder. The GUI builder
processes the requests and assembles the interface using the Qt GUI toolkit. By implementing a
distributed GUI server with the same services as the original GUI builder these requests can be trapped
and forwarded transparently to the distributed GUI framework. See Figure 3. Note that no modification
to the existing application code is required. The distributed GUI server can be substituted for the original
GUI builder at run-time.

As is the case with most distributed-object technology the distinction between client and server becomes
blurred in this architecture. Both the distributed GUI framework and the distributed GUI server provide
RMI services for each other: GUI building services on the "client"; and callback services on the
"server".

A solution to the widget binding problem makes use of this client/server, server/client architecture.

When a request for a button is received from the message passer a "virtual" C++ button is created in the
distributed GUI server. This C++ button then uses JNI to instantiate a real button on the front-end via an
RMI call.

Figure 3: Communication within the distributed GUI framework architecture.

An integer representing a pointer to the C++ button is passed as a parameter to the Java button on the
client. When a user clicks on the client-side Java button a server-side callback is invoked via RMI. The
virtual button’s pointer value is passed back to the distributed GUI server as a callback parameter. Using
JNI the integer value is turned back into a pointer to the C++ button in the distributed GUI server. The
virtual button then sends a callback to the message passer which appears to have originated locally. This
completes the loop which essentially implements the distributed callback technique described by
Mowbray and Malveau [13]. As soon as the C++ callback has been sent to the message passer the RMI
call from the GUI framework client returns.

6 Conclusion

There are a number of design decisions involved in the provision of an Internet front-end for an existing
or legacy application. These include finding an appropriate deployment mechanism, minimising
re-deployment, achieving platform independence, providing integration transparency and resolving
language inter-operability problems. The distributed GUI framework presented in this paper attempts to
address these problems.

With the inclusion of CORBA ORBs and Java VMs in Web browsers distributed object technologies are
now widely accessible. The engineering advantages they provide, however, come at the cost of
performance and a further divergence in browser compatibility. Sockets based implementations provide
the best performance but the cost of developing complex protocols has to be addressed.

References

[1] D.C. Schmidt and M.E. Fayad, Lessons learned building reusable OO frameworks for distributed
software, Communications of the ACM, 40(10), 85-87, 1997.

[2] D.C. Schmidt and M.E. Fayad, Object-oriented application frameworks, Communications of the
ACM, 40(10), 32-38, 1997.

[3] J. Nielsen, Does Internet = Web?, Alertbox, September 20, 1998,
http://www.useit.com/alertbox/980920.html

[4] Sun Microsystems, Java Foundation Classes (JFC), http://www.java.sun.com/products/jfc/

[5] Troll Tech, Qt Reference Documentation, http://www.troll.no/qt/

[6] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, A note on distributed computing, (Report No.
SMLI TR-94-29), Sun Microsystems Laboratories, 1994,
http://www.smli.com/techrep/1994/abstract-29.html

[7] Sun Microsystems, Java Native interface (JNI),
http://java.sun.com:80/products/jdk/1.1/docs/guide/jni/spec/jniTOC.doc.html

[8] S. Vinoski, CORBA: Integrating diverse applications within distributed heterogeneous
environments, IEEE Communications Magazine, 35(2), 46-55, 1997.

[9] A. Vogell and K. Duddy, Java programming with CORBA, New York: John Wiley and Sons, 1997.

[10] Sun Microsystems, Remote Method Invocation (RMI),
http://java.sun.com:80/products/jdk/rmi/index.html

[11] B.A. Myers, UIMSs, toolkits, interface builders, Handbook of UI Design, 1996.

[12] B. Shneiderman, Designing the user interface: Strategies for effective human-computer interaction
(2nd ed.), Reading, Mass.: Addison-Wesley, 1992.

[13] T.J. Mowbray and R. Malveau, CORBA design patterns, New York: John Wiley and Sons, 1997.

